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Resumen

La seguridad puede considerarse como una de las caractéias nmas importantes en las

comunicaciones actuales. La necesidad de transmitir infonacon crtica de manera segura

utilizando canales publicos cobra especial importancia B el contexto de sistemas de @mputo
globales como Internet. La abrumadora presencia de estossg¢mas en la vida cotidiana, hace
que garantizar sus propiedades de seguridad sea un verdadereto dentro de la teora de la

computacon.

En este contexto, los metodos formales consituyen una altmativa para el diseno correcto
de mecanismos de comunicacon segura. Se trata de abstraéws aspectos esenciales de los
protocolos de comunicacon en erminos de especi cacioes formales que puedan ser rigurosa-
mente veri cadas. De esta forma, implementaciones derivaas de estas especi caciones tienen
una olida garanta de su correcto funcionamiento. Los @lculos de procesosson lenguajes
formales de especi cacon, especialmente creados para s@rollar especi caciones abstractas
de sistemas concurrentes y noviles. Estos @lculos ofrem operaciones para la descripcon
precisa de los sistemas, as como mecanismos para el arsit en el tiempo de las especi ca-
ciones desarrolladas. De forma general, este trabajo explbel uso de un @lculo de procesos
concurrente en el aralisis, diseno y especi cacon de potocolos de comunicacon. En con-
creto, este trabajo propone SPL como un @lculo de procesaadecuado para la veri cacion de
propiedades de sistemas Peer-to-Peer (P2P). De esta form&UTE y FTN, dos protocolos
de comunicacion para este tipo de sistemas son analizadosilizando los elementos formales
provistos por SPL. Se trata de esquemas de comunicacon anlipmente relevantes en la ac-
tualidad: mientras que el primero representa un esquema gemal para compartir recursos en
una red diramica, el segundo esh orientado a la recon guracon de aplicaciones en ambientes
colaborativos. Las propiedades de seguridad mas relevaas para cada uno de estos protocolos
son identi cadas y analizadas. Este estudio se ve complem&to con nuevas versiones de los
protocolos que corrigen falencias de seguridad. Una conkricon adicional consiste en una
serie de codi caciones (encodings) que facilitan la des@ton de ciertos tipos de protocolos
de comunicaciones concurrentes; estos encodings se man#ga conservativos con respecto a
los elementos existentes en SPL.

De esta forma, este trabajo presenta resultados positivosneel campo de la veri cacon formal
de protocolos de seguridad utilizando @lculos de proceso El presente trabajo da & tanto
de la aplicabilidad de estos formalismos en el modelamientde sistemas de comunicacbn
concurrente de la vida real, como en el hallazgo de falenciade seguridad asociadas a los
protocolos estudiados.
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Abstract

Security assurance can be seen as one of the most important atacteristics in nowadays
communication systems. The need of con dential and reliabé transfer of critical information
using public channels emerges with special importance in abexts where open and mobile
networks are crucial for the accurate behavior of distributed tasks, such as wireless networks
or the Internet. The overwhelming presence of this kind of sgtems in our daily life turns out
the correct achievement of security warranties into one of he most important challenges in
theory of computation.

In this context, formal methods arise as one of the alternatves for the correct design of secure
communication mechanisms, focusing in abstracting esseial aspects from communication
protocols in terms of formal speci cations that can be rigorously veri ed. In this way, imple-
mentations derived from these speci cations obtain a solidwarranty of their correct behavior.
Concretely, process calculiare a set of formal languages intended for the speci cation ad
veri cation of concurrent and mobile systems, o ering primitives well suited for the precise
description of these systems, as well as reasoning technigsi for the analysis of the speci ca-
tions acting concurrently over time.

This work explores the use of concurrent process calculi inhte analysis, design, speci cation
and veri cation of communication protocols. In particular , it proposes the use of SPL as a
process calculus well suited for the analysis and veri catbn of security properties over Peer-
to-Peer(P2P) systems. In this way, MUTE and FTN, two protoco s that clearly represent the
behavior of distributed communication systems over open nvorks, are modelled and veri ed
in SPL. The rst protocol portrays a general method for sharing resources over a dynamic
network and the second is oriented to the dynamic recon gurdion of applications in collab-
orative environments. Security properties relevant for egh of these protocols are identi ed
and analyzed by means of process calculi, bearing witness tife applicability of this kind of
reasonings. This work is complemented with modi ed versiors of the protocols, correcting the
security holes encountered in previous versions. In additin, a set of encodings are modelled
in SPL, easing the description of concurrent protocols speed in other approaches.
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1 Introduction

This thesis explores the use of formal models for the analysiand veri cation of security
properties in real-world communication systems. In partiaular, we explore the use ofprocess
calculi, a well founded set of techniques specially designed to stydthe interaction and evo-
lution of processes over time, to model and verify communic#on protocols for Peer-to-Peer
(P2P) systems.

1.1 Motivation

Security of information has always been one of the main conces in social behavior. The
assurance of a personal secret which cannot be revealed tonseone unauthorized, and the
notion of trust have been relevant concerns since the beginngs of commerce and wars.
The emergence of global communications, electronic procgisg, and distributed computation
have increased the relevance of these concerns. Recent ddtam the 2004 Internet Fraud
Crime report [Col05] is just one example of the strong in uence secure communidens have
in business: about 207.449 complaints (with quantitative bsses of US$68,14 Millions) were
reported to be related with threats including electronic fraud, identity theft and supplantation,
and even hacking.

A wide variety of (automated) tools have been developed to ogrcome security risks, including
rewalls, access control mechanisms and cryptographic-bsed software. These mechanisms by
themselves, however, are not enough to provide security waanties; the open nature of the
communications, and the inherent vulnerabilities of distributed systems makes it essential to
provide higher levels of assurance for principals involvedh a privacy-sensitive communication
process. As a response to this problem, a set of methods knowas security protocols have
arisen:. they de ne a precise set of steps that principals hae to follow in order to establish
secure communication between parties involved.

Security protocols have been widely used since its appearaa, being at the heart of a huge
amount of computer applications. However, we can never be eodent over the security of
a system unless we have some assurance of their e ectivenesfs an example, one of the
classical methods dates from 1978 when Roger Nedham and Misbl Schmeder designed a
protocol to prevent the disclosure of identities in an authentication process over untrusted
networks such as the internet NS7§. The protocol, apparently correct, was rapidly adopted
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in industrial and military applications until Gavin Lowe sh owed a aw where messages in
transit can be discovered and manipulated using a well de nd set of steps Low95]. With
these results, one can question: How to ensure the correctag of a protocol?

Formal methods constitute an analytical approach for software and hardware design, that
intends the reduction of errors by relying on solid mathematcal models. One of the major
bene ts of formal methods is that they o er reasoning techniques that cover every possible
state of a design, and the inclusion of well-de ned proof tebniques which ensure the accuracy
and correctness of a design. The generality of formal methalcontrasts with the ad-hoc spirit
present in other approaches, such as empirical analysis angimulations. Process calculi con-
stitute a particular class of formal languages, specially dented to the analysis of concurrent
systems. The main idea underlying process calculi is the albsction of real systems in terms
of basic units known asprocesses The calculi provide precise elements to describe systemsa
a combination of processes, as well as o er tools to study théehavior of systems over time.

Consequently, process calculi appear as convenient tool® tgive a formal avor to complex,
concurrent computing systems. Several process calculi havbeen proposed over the last twenty
years Plo81, Mil95, Mil99, CG98, Hoa83 RP91]: although they di er on particular aspects
for understanding communications, all of them agree on the bsic principles given above.
Following an interesting evolution, in the last ve years process calculi haveparticularized in
speci ¢ domain areas. In this way, for instance, several proess calculi tailored for modeling
biological phenomena have been proposedRES01 KD03, RPS* 04, Car04, BC02, GPRO05].
Similarly, security has been a particular active area in this recent evolution: diverse process
calculi, o ering alternatives to the problem of modeling and verifying secure communications,
have been proposed. Instances of these calculi include and the Spi calculus Mil99, AG99],
the CSP process algebraHoa83, and more recently, the secure protocol language (SPL)
[CWO01].

This thesis explores the use of a process calculi in the anais and veri cation of security

protocols, providing an analysis of recently proposed mods and tools, as well as contrasting
their applicability in the modeling and veri cation of real world communicating systems. In
particular, we focus on the study of communication protocok in Peer-to-Peer (P2P) systems.
These systems, usually operating over open and distributedietworks, take advantage of vast
communication networks to accomplish diverse tasks in a ver exible manner. Examples

of P2P communication systems include instant messaging apigations, resource sharing web
communities and collaborative work environments, such as N messengerfse03, Skype
[BS04, Kazaa [GK03], Minerva [BMWZ05] or Gnutella [Rip01].

As in other contexts, the current ubiquity of P2P communication systems makes them prone
to serious security vulnerabilities. Mainly because of thé& novelty, little work has been ex-
ercised in order to give formal warranties of security propérties in P2P systems. Our work
intends to give concrete contributions in this context by studying two P2P communication
protocols using SPL. MUTE, the rst protocol, constitutes a exible scheme for resource
sharing in distributed environment. Security vulnerabili ties for MUTE are identi ed and cor-
rected. In the same sense, FTN, a collaborative P2P communation protocol is formalized
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and analyzed. Speci c features in FTN lead to the design of eoodings that ease the formal-
ization of certain aspects present in other process calcylimportant for the correct modeling
of several concurrency protocols.

1.2 Objectives

General Objectives To explore the expressiveness of a security process calcalby means of
modeling previously non-formalized real life communicaton protocols.

Speci ¢ Objectives
To explore and analyze the nowadays existent process calgutoncerned to security
matters.

To identify the most relevant features a process calculus mst ful Il in order to model
and verify systems related to security.

To identify, select and justify the most appropriate process calculus for modeling and
verifying secure systems.

To understand about the di erent secure communication protocols, their basic phases
and their implementation methods.

To identify, select and justify two peer-to-peer protocols used in real life implementa-
tions, taking in count their functionality and the security properties they should ful Il.

To verify the ful iment of some security properties in thre e selected communication
protocols, under the chosen security process calculus.

To study an extension to the chosen calculus, in order to incease its expressive behind
communication protocols.

1.3 Contributions

The main contributions associated with this work are presemed below:

1. We give a comparative analysis of the most relevant procescalculi concerned to secu-
rity. Factors that in uenced this comparison included synt actic structure, associated
operational semantics and proof techniques.

2. We bear witness of the applicability of the SPL process calulus and its inherent proof
technigues for modeling and reasoning about real life protools.
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3. By means of an SPL speci cation, we present a rst formal characterization of P2P
systems. Flexibility of the calculus allowed the inclusionof an speci ¢ set of roles, and
considerations about the security issues related to everyrtity involved.

4. We provide a set of proofs related to two security protocat used in P2P systems, in-
cluding the assurance of security properties never formatied in SPL. These proofs were
formally derived from the process calculus speci cations.

5. We propose and verify improved versions of the analyzed comunication protocols, that
correct security aws (identi ed with the help of formal spe ci cations).

6. We propose a set of encodings for SPL, that ease the desdiign of certain kinds of
protocols. These encodings are conservative with respecbtthe language.

It is worth pointing out that part of this work was presented as a contribution for The
Association for Logic Programming Newsletter Digest[ALRO05], re ecting some of the results
associated with the MUTE protocol obtained in chapter 3.

1.4 Document Structure

The document is structured as follows: In the next chapter wepresent a brief description
about the fundamental notions of communication and the impatance of several approaches
developed for describing and analyzing concurrent commugation systems, such as process
calculi. We make a particular emphasis in security concern®earing witness of its relevance for
communication environments, as well as giving the basis fothose process calculi specialized
with security, such as CSP, Spi and SPL.

In chapter 3 we show how SPL is a well suited framework for analyzing secily aspects in
P2P protocols, by modeling and verifying MUTE, a popular le sharing P2P protocol. We
rst analyze this protocol in order to ensure secrecy in an emironment with outsider attackers
which cannot get inside the network, and then we include new entributions to the P2P system
in order guarantee a much more stronger property, such as sescy behind an intruder which
can masquerade as a trusted user.

Chapter 4 gives two di erent approaches for formal description and vei cation of P2P col-
laborative protocols. It presents two ways of modeling thes kind of protocols. The rst one
includes a set of encodings representing new constructionfer SPL syntax and the second
one regards the development of a new protocol which extractsoncepts from other di erent
protocols. In our last case, we verify security properties gch as secrecy and integrity.

In the last chapter we discuss some related work and we give ¢some concluding remarks,
as well as pointing out to principal directions derived from this work.



2 Security in Communications

This chapter aims to introduce the reader into the main concets of communication in com-
puting, from basic models of sequential interaction up to me@e complex systems where con-
currency and parallel computation play important roles. Here, several concepts are given in
order to analyze properties concerned to the behavior of sysms in which concurrent entities
are in constant interaction. In the same way, this chapter ha the objective of presenting the
importance of security issues in communication systems, awell as giving a notion of some
formal mechanisms developed for modeling and analyzing seity properties in this kind of
systems.

2.1 Communication

Communication is a wide concept covering several aspects oéal life. From a baby crying

at his mother's ear, to the interaction between a person witha computer machine, and much
more complex interactions such as the ones involved in vasteiworks where data constantly

ows. In this sense, communication could be de ned as the praess by which two entities
exchange information through a medium, via a common system fosymbols, such as sounds,
words or even numbers.

In the following example, we have two entities which communcate between them.

------ Hello World - »%
Bob

Figure 2.1: Basic Communication Process

Alice

Alice sends a message to Bob through the medium. In this partiular case the message ows
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through a public channel until Bob receives it. The public channel resembles a channel with
no access restrictions for any entity. Hence, we denote the aedium as the public channel,
since anyone can have access to it.

Although sending and receiving a single message can be deedtas communication, there
are much more complex and speci c ways of establishing a comumication channel between
principals in our daily life, known as communication protocols. These kind of protocols are
a convention or standard, which control and enable the connetion, communication and data
transmission between entities.

In the following example, we present simple communication potocol in which two entities
communicate between them in an interactive way, in order to aswer a particular question
requested by one of the participants. We can see series of gteboth entities have to follow for
succeeding in their intention to achieve the desired aim. Tls example, despite being a very
simple communication protocol, is very useful to understam the meaning of the interaction
by the movement of events.

lice ob

* *
Figure 2.2: A simple communication protocol

Here, as an initial step, Alice sends a request message to Babrough the medium. By means
of this message Alice asks a question to Bob. Bob receives timeessage and understands what
Alice is asking for, and as a second and last step, Bob respoadvith a message answer to
Alice's request.

Communication protocols are very common under several ciemstances: from a pretty simple
cellular interaction process taking place in our own body, b a single conversation between a
pair of principals, where they have to follow series of steps order to establish a comprehensive
dialog, up to complex banking transactions.

The way in which two entities exchange information in an empty space, where there are no
sounds or interruptions which may alter the communication £nse, seems really intuitive and
straightforward. However, is rarely feasible, there are seeral circumstances where communi-
cation cannot take place between two isolated objects; ocasions where a set of individuals
try to communicate at the same time, and some kind of order andcontrol is needed, in such
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a way that all the participants can understand the informati on intended for them. That is

when a previous important requisite must be ful lled, which is the synchronization of events,
in order for the communication to take place. This kind of action, where events occur at the
same time and a previous synchronization phase is requireddfore communication, is denoted
as concurrency.

2.1.1 Communication in Computation

As stated before, there is a huge amount of elds where communation is present. Compu-
tation is one of those areas where communication plays a verymportant role, since, even in
isolated machines, processes must establish series of irdetions between one and another, in
such a way that they may be able to work adequately.

In addition we can say that, since nowadays computing system involve a lot of interaction
between their components which are concurrently active, tlere arises the need of an underlying
model with some basic inherent concepts, by which interactie behavior may be described and
analyzed in such complex scenarios.

Communication systems such as computer networks, are on thaeeed of understanding its

behavior in a way that many di erent properties may be veri e d with respect to some form

of ideal characteristics, so correctness in the designs or adels beneath the systems can
guarantee its well functioning. That is when the concept of brmal models for concurrent

communications arose, playing a very important role in compting, allowing the development

of comprehensible models focused in speci ¢ phenomena.

2.1.2 Formal models for concurrent communication

Approaches for studying and building concurrent communicdion systems are not a novelty in
computer science. There have been previous studies based aloservations and ad hoc analysis,
which have given an overview about the general concepts in wih this kind of systems were
based, their behavior, and the properties they should ful Il in order to guarantee their well
functioning. These initial approaches have brought to liferelevant theories, such as the ones
related to semaphores, monitors or threads$PG91].

Even though these were interesting works indeed, they did nbenable e cient and under-
standable verifying mechanisms. A major problem, since vercation of properties in these
initial approaches seemed really complex and certainly ver prone to errors. That was the
moment in which the need of a formal model arose, in order to reresent the interaction oc-
curring inside these systems, enabling a more intuitive dagiption of their behavior, and in
consequence, more formal veri cation principles. These kid of models such as strand spaces,
modal logics or process calculi appeared by means of sevel@sic concepts extracted from
other approaches such as graphs, Petri nets, transition syems and mathematical and logical
theories.



2.1.3 Process Calculi

Process calculi cover the family of related approaches to formally model conurrent systems.
The main idea underlying process calculi is the abstractionof real systems in terms of ba-
sic units known as processes The calculi provide precise elements to describe systemssa
combination of processes, as well as o er tools to study the éhavior of systems over time,
providing a high level description of interactions, commurication, and synchronization within
them. Process calculi also provide a set of laws that allow pmrcess descriptions to be ma-
nipulated and analyzed, permitting a formal reasoning abou equivalences between processes,
such as those required for solving the classical problem ofetermining if an implementation
of a protocol satis es an ideal speci cation.

A process calculus has several important features by whicht istands out over other formal

approaches. It must have a syntax by which its constructs cant an intended phenomena such

as determinism, parallelism or recursion. It shall includea well established semantics which
can give a meaning to the possible constructs inside the caltus. It requires mechanisms for
comparing processes, as well as a way to specify and prove perties concerned to behavior
of processes in a system.

We will present these ideas, by describingCCS, a simple process calculus de ned by Robin
Milner at [ Mil95]. This calculus will enable us to analyze both sequential ad concurrent

processes in synchronous communication systems. We will @sent a brief overview of the way
in which this particular calculus cover the issues a processalculus must ful Il.

The expressions of this language are interpreted by means aflabeled state transition system,
which denotes a set of states, not necessarily nite, connéed by labeled transition relations
between its components. The transition system is the base ahis particular calculus, since
its transitions can capture the way in which new processes ¢abe derived from others, via a
particular action (Each state represents a process and a ladded transition, an action).

2.1.3.1 CCS Syntax

There are some important sets which will serve as the base ohe entire calculus.

Let N = a;b;:: be the set of names denoted as the output communication charels and

N = a;b;:::its complementary set denoted as the co-names. 2 N anda2 N wherea and

a are complementary actions, an interaction between parts ofa process can be shown; The

set of labelsL = N N ranged over (;1%::): And a set of actionsAct L [f g where we call
as an unobservable or silent action. These actions range avé ; ;::: )

The syntactic set is de ned as follows:

P;Q;:::=0j P jPKQjP + Qj(a)PjAha;:ayi (2.1)

where capital letters P; Q;::: act as process identi ers; 0 represents the particular nil pocess
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which does nothing; a:P is a pre x, where P cannot proceed until action a is achieved;P kQ
is the composition of processes P and Q, where they can proakeoncurrently; P + Q is a
summation, where only one of the process involved can evoly¢ a )P means that the channel
a is restricted to the scope of proces®; and A(ay;:::ay) is the processA with parameters
as; il an

2.1.3.2 Concurrent Processes

Every channel a is complemented by a channeh. This is an important concept for commu-
nication, since they will represent communication channes. Every complementary pair @;a)
will denote a possible interaction. In this way, each one of hose pairs represent a synchronized
action or a handshake, by which two processes will establisa communication channel. So we
will say that a process transition is denoted byP | P°%where 2 fajag, is the capability
of processP to participate in a reaction with another process running cancurrently and which
can perform the complementary action. We say that both actians a; a are observable actions,
and an interaction at a, is a mutual observation. In the same way, there is an speciatase
where = will correspond to an unobservable reaction.

After de ning the operational semantics in the following section, we will give out an example,
recalling Alice and Bob, which will clear out the concept of reactions between processes in
the CCS calculus.

2.1.3.3 Operational Semantics

° 0 Pt pO Q! Q° p1 po
P P(ACT) %&kgo (REACT) P+Q! PO (SUM.) P+Q! QO (SUM2) PkQ! POkP (COM1)
Q' Q% ! pogl! oo pi pO .
PkQ! PkQO (COMz2) % (COM3) newaP ! newaP © if 6aand 6 a(RES)

..... —n e a
Palbiib n=aiiza ol PO it A (g oa,) € Py (REC)

Table 2.1: CCS Operational Semantics

Example: Let us de ne

Alice " b:Alice® and Bob %" b:Bolf.

We can see that both have complementary actions, and if they @ composed in parallel, they
will react. In this way we represent the communication betwesn two agents which have to
interact so they both can continue working. So havingAlice k Bob, we will apply the transition
rules described in2.1.3.3to describe their reaction:
1. Having Alice de
Bob!” Bok’

" b:Alice® and Bob €' b:Bol we useACT to infer Alice 1° Alice® and



2. Then, using REACT with Alice !° Alice® and Bob !° Bob® we get the reaction
AlicekBob! Alice %kBobk®

At the end of the transition we can see that a reaction has occured and both processesAlice
and Bob, can evolve toAlice®and Bok°

2.1.3.4 Reasoning Techniques

Reasoning techniques are one of the most important charactestics in a process calculi, since
with them a relation between processes can be establishedp&bling di erent ways to compare
processes, as well as other manners to relate a real procesighnits abstract speci cation.

In CCS there exists the notion of equivalences which enable the resaning about the behavior
of processes. Here we present some of these concepts.

Denition 1 (Strong Simulation). Let T be a transition system. A relation R S(T) is a
simulation i for every pair of states (p;d) 2 R and p!® p°then exists someg®st. q!* ¢®and

(P9 2 R

We can say that a statep simulates g if there exists a simulation R such that (p;0d) 2 R.

De nition 2 (Strong Bisimulation) . Finally, a Strong bisimulation (denoted by ) is con-
sidered as a relation whereR and its converseR 1 are both simulations

Weak Bisimilarity In principle, two processes should be equivalent if no otheprocess in the
environment can see any di erence in their behavior. This kind of bisimilarity captures this
notion, since it relies in the equivalence between processeavith equivalent observable actions.

For example, :P and P are not strongly bisimilar, but as we have said, they are wealy
bisimilar since the equivalence is just focused in real aatins from the observer point of view.

De nition 3  (Weak Simulation). S is said to be a weak simulation i for every (p;qg) 2 S if
p)° pPthen there existsPst q)° ¢®and (p® ¢ 2 S Where)® is as an experiment and denotes
a sequence of observable actions interspread with zero or me@unobservable actions.

De nition 4  (Weak Bisimulation). A weak bisimulation ( ) is a binary relation S over
processes where botlg and its converse are weak simulations. We sal? Q whenP;Q are
weak bisimilar. Intuitively we can say that every strong bisimulation is a weak bisimulation.

2.2 Security

Several aspects of life involves security, basically the a@s that involve personal information
that can be manipulated or missused. It is very common to hearabout banks robberies,
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identities supplantation or even frauds. Many of these threats were available due to obvi-
ous infrastructural problems, like the absence of reliablecommunication methodologies, alert
systems, and naive behavior between involved parts.

As time evolves, techniques to overcome these problems hawisen: big robberies are less
frequent due to the creation of complex alarms, communicatin systems and transportation
methods which improve the e ectiveness and time of responséor security corps, protecting
large organizations; a wide variety of reliable identi cation systems have been created in order
to verify individual identities, and trust certi cates hav e become an useful policy in order to
support con dence in commercial activities. Unfortunately, intelligence of attackers have
become more sophisticated, as well as their techniques anddls. The emergence of computer
systems have been a cornerstone in the development of new atiks, from simply brute-force
analysis of passwords, to highly technical attacks involving distributed agents that contribute
to each other in the search of a security hole of a system, paisg through computer viruses
and malware *.

In this way, searching for solid foundations in security hasbecome a major problem in nowa-
days. Detaching each aspect involved in this topic, there a& three main levels that a system
might consider in order to achieve security in environments The rst one, concerned with
the basics primitives of a system, is devoted to algorithms ad intends to guarantee that the
tools of a system themselves are capable enough to resist geity attacks from an intruder
that knows characteristics of a system; this level includesmportant security areas like cryp-
tography, random number generation, secure channel creain and so forth. The second one
appears when distributed systems are involved, because conunications between agents open
new opportunities for the attackers, even having the protetion of cryptographic algorithms
in the systems. Finally, the third level speci es security goals of the system, and de ne which
protocols and tools are useful to tackle these goalsASL0OQ]. In this section, we will introduce
the main characteristics of each of these topics, in order teshow the relevance for communi-
cation systems. In this order of ideas, we present the actuainain concerns in security, as well
as going in detail with each one of the security levels, showg their main features as well as

the classical techniques.
/ Policies \
/Security Protocolé\

/ Security Primitives \

Figure 2.3: Levels of Security in a SystemASL0Q]

YHardware, software, or rmware that is intentionally inclu  ded or inserted in a system for a harmful purpose.
Available at http://www.ee.oulu.fi/research/ouspg/sage/glossary/
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2.2.1 Security Properties in Communication Systems

Establishing a rigorous direction of needs in nowadays commmication systems is not an easy
task. Assertions about the "correctness” or "security" of a protocol are vanished, primarily
because of the vast variety of purposes by which these systesvare directed. As an example, a
communication protocol operating in a Peer to Peer (P2P) sygem intends to guarantee that
the information over the network is preserved despite the pamanent movement and lack of
persistence in the connection of the principals involved; bwever, this need is addressed in a
completely opposite way comparing it to a transactional sysem which only accepts a message
if all agents involved are present along the entire protocolrun [BPO1]. In this way, some
design considerations in the eld of security have to be presnted prior to the selection of a
secure communication systemAba0OQ]:

Open Networks: Due to the vast connectivity of systems, more resources andsers are

available in the same environment, so overload and corruptin become very common

problems. Even worse, due to the ability of users to access m® systems, access controls
for single users may be inadequate in open networks.

Dynamic Con guration: In a communication process between agents in an open net-
work, several paths are available to route each of the messag involved, therefore the
security of the system may need to ensure that using every pétto route a message,
maintains private messages safe.

The principals involved in a communication network operate over a wide and open
environment, in presence of not only trustful neighbors, bu hostile agents that can
behave in the opposite direction of the principal purpose ofthe protocol, modifying the
information involved in each interaction. Moreover, it is possible that these agents are
not completely trustful, a dangerous risk if the system shaes critical information.

The analysis of security properties is almost completely baed on the resources available
to attackers. Sometimes is necessary to model fraudulent &mts in uncommon scenarios,
these scenarios represent almost the worst case that a protol can be exposed. As an
example for a well known protocol like the Needham-SchroeddLow95], it is hecessary
to suppose an attacker present in every interaction betweeragents.

Security Assurance might involve abstracting the communi@tion model from other de-
sirable properties in a computing system, like correctnesand e ciency.

With these considerations, the assurance of communicatioprotocols often used a number of
security properties de ned. The meanings of these terms are frequently taken ashwious and
widely understood, but it often turns out that for these noti ons, di erent kinds of interpre-
tations are given, even in a single document. For this reasois crucial to give a precise and
formal meaning, since when specifying a protocol it can onlype claimed as correct or secure
when compared to a precisely de ned property.
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In the following lines we present a number of general propeies used in the veri cation of
communication protocols, stressing the fact that the seletion of desirable properties for each
protocol are related to its speci ¢ use.

Authentication: It is declared for two speci ¢ purposes: to bring credibility to a message
received [5ch964, and to assign responsibilities in communication tasksfGO01]. In this
way, authentication gives the system the ability to make dedsions about the correct
identi cation of an individual, or to verify that an agent in volved in the communication
protocol is the correct person he intends to be.

Con dentiality: To ensure that resources in a system are protected from unatbrized

access and use of principals strange to the system. This is &w common property in

the design of servers and rewalls. However, sometimes theonitrols established by these
devices are intentional broken, and other access controlsarequired[RSG" 01]. Another

important property derived from con dentiality is known as Secrecy[Aba00, MKL * 02],

which intends to guarantee that the privacy-sensitive infaomation of a system will not

be revealed to any unauthorized principal.

Avalilability: This property ensures that the resources of a computer systa are available
to authorized agents [Gol99]. Availability tackles di erent kinds of threats, like ove r ow
attacks (Denial of Service -DOS-), bu er over ows and electrical accidents.

Responsibility: States that every action on the computing system can be trace up to
the agents that originated it [AbaOQ]. One variation of this property, known as Non-
Repudiation [BP01] states that an agent receiver of information has the ability to prove
that the sender of some data did in fact send it even though thesender might later
desire to deny his actions.

Non-Malleability: This property establishes that the agents involved in a probcol can-
not modify the contents of a given message. This property, fadamental in transaction
systems can sometimes be took for granted in communication rptocols that involves
cryptography, supposing that without the appropriate key, an attacker cannot modify a
message without corrupting its structure [Rud00]. A variation of this property is known
as Integrity. There are two main de nitions of integrity in computing. The rst one
consists in ensuring that a computing system is protected aginst the unauthorized ma-
nipulation/destruction of data [ RSG" 01]. The second de nition addresses to computer
system correctness, establishing that those systems mustefnave in the way that they
are constructed for, avoiding malfunctions [50l99].

Anonymity: Establishes that the credentials of each agent in the systenare only known
by authorized agents, meanwhile unauthorized principals an read their published mes-
sages but cannot know their identities [MKL *02]. One derivation of Anonymity is

Non-traceability, a property which implies that is impossible to determine the origin of

a message in transit on the network. This property is desirake in P2P networks, and
its purpose is addressed in the opposite that address authdénation.
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Is an obvious fact that communication systems by themselvesan not ful Il these require-
ments. That is why a wide variety of tools are created to compément the accomplishment of
these tasks, using cryptography as the cornerstone where @erity lies. In the next section,
we shall explain some of these tools and relate them to sectyiconcepts.

2.2.2 Cryptography

Cryptography itself deals with the communicating presence of adversarg& In this way, pre-
vious messages passing in a medium would be available for eyeagent in the network, a
non-grateful characteristic for task compromising sensitve information. Examples of these
systems were present in World War 1l, where di erent armies d opposite sides shared a com-
mon medium (Radio channel) in order to transmit tactics that can reveal the next movements
of troops. To tackle this problem, several techniques were eveloped in order to accomplish
trusted communication between certi ed agents.

We shall introduce some basic concepts that will be used latein this chapter:

Denition 5  (Messages in a Cryptosystem) Let P a set of Plaintexts (an ordinary message
completely visible and understandable in natural languag® C a set of CipherTexts (Com-

pletely non-understandable messages, where no informatiocan be obtained/inferred from its

contents) and K as a set ofKeys (Parameters that, combined with a function, produces a
ciphertexts from a plaintexts). Finally M is de ned as a message whersl 2fP[ C[ Kg

The rst case where history reports the use of cryptographictechniques raises in the middle
of the Roman empire. The emperor Caesar, worried about the aoect execution of his orders,
created a simple technique that prevented that the messagesent across the empire can be
discovered by unauthorized people. The basic idea was to shea common numeric keyk
between the generals and the emperor, shifting the order ofrte letters k positions below, and
transmitting the message over the imperial courier. Finall, when the message is received
for the correct principal, he just has to switch backward the messagek positions in order to
discover it.

|C(m)

"Attack Constantinople™ ! 3 "Dwwd nPrqvdgviqgod”

In this example, we use the Caesar's code with to convert a platext m to a ciphertext n
with a function (a simple substitution) using the key k (with a switching factor of 3). It is
clear at rst sight that the message is unintelligible for every person without knowledge of the
underlying technique for discovering the data; but with a little logic sense, a good observer
can search for patterns that can break the message. This brieexample introduce us to the
rst model of cryptographic techniques, known as Symmetric Cryptography.
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2.2.2.1 Symmetric Key Cryptosystems

Basically, the systems that use a single key for encryption ad decryption of messages are
known as Symmetric key Cryptosystems[Hut01], as an example Alice and Bob must estab-
lish a previous agreement in order to sign every message inansit with a key in common,
using practically the same algorithm to transform a messagdrom cleartext to ciphertext and
viceversa.

De nition 6.  Symmetric Key Cryptography:

Let A;B agents,key(a;b) = key(b; a a shared key between principalA and B, m a message
in plaintext and c a ciphertext. Symmetric key encryption/decryption functi ons are de ned
as:

def
G —  sdmi;key(a;b)
def

mi —— sc (c;key(a;h)

Where sc(:::) and sc 1(:::) are essentially the same operations or algorithms.

There are two main classes of symmetric key Cryptosystems,haracterized by the way that
they encrypt messages:Stream Ciphers [Rue8q and Block Ciphers [Lai92].

Stream Ciphers: The basic characteristic of this class of ciphers lies in thevay they
encode the message. The main idea is to divide the contents dhe message as a
sequential composition of tiny messages replaced or subsiied for ciphertexts of the
same length generated by a substitution key (see imag@.4(a)). This approach has
advantages in terms of the leverage of computational power sed in order to encrypt or
decrypt a message, but also has very important limitations b consider: the rst one
deals with the error control of messages, because the atonitic of each message can be
corrupted if at least one of the submessages are lost or modéd. The second one involves
a crucial security risk, symmetric key cryptosystems are baed on the assumption that
unauthorized agents can never have a secure key known by eyetrusted user. This
assumption is very di cult to prove in a practical environme nt, as well as addressing
other topics outside cryptography itself like the correct management and distribution of
keys.

Block Ciphers: These cipher algorithms treat a message as a whole entity, $itiing the
contents of the message into blocks and permuting them using transforming function
that encrypts the whole block, converting into pieces of cifertext that can only be
understood with the entire message and the correct key, as iage 2.4(b) shows. Some-
times, the simple substitution was not enough to obscure theelation between plaintext
and ciphertext, so substitution boxes (S-boxes[Hut01]) came as a mechanism to prevent
the disclosure of the messages. This mechanism acts as a legj table were a sequence
of bits are dynamically converted to a di erent one using a patern. Block cipher algo-
rithms has some advantages over stream ciphers, like contta@orrection and integrity.
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However, in many systems both approaches are mixed togethein order to achieve a
suitable symmetric key cryptosystem, using block ciphersn an authentication phase
and later on using stream ciphers for transmission of messag.

‘PO‘Pl‘ZZZ‘Pi ‘:::‘Pnl‘Pn‘ “Po‘Pl‘;;;‘P. ‘:Z:‘Pn1‘Pn H
Yy
. Stream Cipher Function — .| Block Cipher Function
IR N T T L -
‘CO‘Cl‘IZI‘Ci‘ZZZ‘ nl‘cn‘ “CO‘Cl‘ZZZ‘Ci‘ZZ:‘ nl‘cn‘
(a) Stream Cipher Encryption (b) Block Cipher Encryption

Figure 2.4. Types of Symmetric Encryption

Although symmetric key cryptography has well known advantages, such as the e ciency
in time and computing power, its a dicult task to guarantee t hat agents involved in a

communication protocol might be trustful enough to kept shared keys away from untrustful

agents. In this way, symmetric cryptography is specially ugd in closed environments, where
we can manage some environments like the number of agents iolved or the communication

channels.

2.2.2.2 Public Key Cryptosystems

Sometimes communication is about open environments incresng the risk for a leakage of
security using shared keys. Imagine for example two peopléilice and Bob, sending a secret
message through public mail service. In this example, Alicdas the secret message and wants
to send it to Bob, after this, Bob sends a secret reply (see imge 2.5).

With a symmetric key cryptosystem, Alice and Bob arrange a previous meeting in order to
create a common key for both of them, then Alice places the seet message on a shelter, and
locks it using a padlock with her key. She then sends the box tdob through regular mail.
When Bob receives the box, he uses an identical copy of Alice'key to open the box, and
reads the message. In this way, Bob can also use the same packao send his secret reply.

In a public/asymmetric key system, Bob and Alice have separ#e padlocks. First, Alice asks
Bob to send his open padlock to her through regular mail, keejmg his key hidden to public,
only available to himself. When Alice receives the padlock,she uses it to lock a shelter
containing her message, and sends the locked shelter to BolBob can then unlock the box
with his own key and read the message from Alice. To reply, Bolmust similarly get Alice's
open padlock to lock the box before sending it back to her.

More formally, a public key Cryptosystem [HutO1] is de ned as follows:

16



De nition 7.  Public Key Cryptography:

Let A;B agents, Pub(a) a public key for A, Priv (A) the secret key fromA, m a message in
plaintext and c a ciphertext. The public key encryption/decryption functi ons are de ned as:

def
c = Epupa)(m)
def
m; = Dpuiv(a)(©
and
m = Dpriv(a)(Epuba)(m))

Where Priv (A)) must be completely undeducible fromP ub(A).

The critical advantage in an asymmetric key system is that Bd and Alice never need to send
a copy of their keys to each other. This substantially reduce the chance that a third party
(perhaps, in the example, a corrupt postal worker) will copya key while it is in transit, allowing

a third party to spy on all future messages sent between Aliceand Bob. Another advantage is
present in the ease of key distribution, allowing an agent topublish his own key in a public site
without need of previous agreements. However, if Bob was catess and allowed someone else
to copy his key, Alice's messages to Bob will be compromisedut Alice's messages to other
people would remain secret, since the other people would bergviding di erent padlocks for
Alice to use.

Alice Bob

Figure 2.5: Public Key Cryptography

2.2.2.3 Digital Signatures

Ciphers are not only used for guaranteeing secrecy propeds, but also used to guarantee
authentication of each of the agents involved in the protocd In this way, the agents involved
will trust that the information received from an agent A is really generated by him, without
unauthorized modi cations (fraud) or threats from other agents (phishing?) . For example,
consider an e-commerce application and you want to ensure #t the orders for every customer
in your system are really placed by trusted users, avoiding hefts that impersonate trusted
users. In this way, you must provide mechanisms of authentiation other than user/password
that can be stolen. In this way, digital signatures emerge asn ideal tool to achieve this. The

2\Phishing" is a form of Internet fraud that aims to steal valu able information such as credit cards, social
security numbers, user IDs and passwords.
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customers are able to certify each order signing it with an ow key for private use, and you
only have to check if the sign matches with the one that you hae stored in your database.

We can use Public Key Cryptography (PKC) in order to achieve these tasks. To do so, the
cryptographic scheme is subtle modi ed in his primitives.

De nition 8.  Digital Signature Schemes:
Using PKC, we can include an inverse function ofE st.
m = Dpypa)(Epriv (a)(mM))
Where Priv (A)) must be completely undeducible fromP ub(A).
Doing so, if Alice must authenticate a message, she just hasotencrypt it with his private
key, and Bob only has to decrypt the document with Alice Public key in order to check that

the message was correctly received (see gur2.6). This increases the security of the system,
relying on the assumption that Alice never publishes her prvate key to anyone else.

Alice

Figure 2.6: Digital Signatures

2.2.2.4 Hash Functions

Another widely used technique used to deal with integrity issues is known ashash functions
This approach uses a computational concept known a®ne-way functions . These set of
functions are the ones that, given a functionf (x), it is practically infeasible to nd a function

f 1(x) st. it can be computable in polynomial time.

A hash function basically consists of a transformation of a nessagan to a messagéeh, whereh
is a message of xed length. Basically a hash functioid (m) has the following characterization:

The length of m can be variable.

H (m) can be computed in polynomial time.
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H (m) is a one-way function.

H (m) is collision-free. This means that, givenH (m); it is computationally infeasible
to:

{ Construct a xed messagem®st. H(m) = H(m9.
{ Find an arbitrary messagem®st. H(m) = H(m9.

A typical protocol that uses hash functions can be seen as flows: Alice wants to send a
messagem to Bob. She then sends two messages withl (m) and Ep yygon) (M) respectively.

In this way, Bob only has to decrypt the message received andpply the hash function to m

and check its correctness with respect taH (m).

As well as cryptographic tools are important to construct a system well suited for dealing
with security issues, they can not ensure the security of thesystem by themselves. A common
practice is to over trust underlying key exchange systems, ioto forget the safe storage of
the secret keys, open to the disclosure of a system. In this wa Security(or cryptographic)
protocols emerge as a way to ensure the correct execution ofsystem. Concretely, a security
protocol is an abstract protocol that performs a security-related function. It includes prim-
itives for concurrent communication, as well as cryptogragic operations in abstract way so
they can be checked without concern of implementation detds outside of the scope of these
techniques. In this work, we aim to review some of the formalm that deals with the analysis
of security protocols, from abstract models only used to deate threats, to well-founded logics
suited to deal with security issues.

2.2.3 Dolev-Yao Model

One of the rst formal approaches for modeling and analyzingsecurity protocols was the model
presented by Danny Dolev and Andrew C.Yao PY81]. It is a simple and useful framework in
which security protocols could be speci ed and veri ed in a very simple manner. Protocols in
this approach are modeled in a clear notation, whereX ! 'Y : M means a messag®l sent
from agent X to agent Y, and M could represent a plaintext m or a cyphertext f mgy:

The Needham-Schroeder-Lowe protocol (NSL) is an authentiation protocol, which describes
the interaction between two agents @Alice and Bob). Alice, acting as the initiator and Bob as
the responder. Alice sendsBob a fresh generated value among with its particular nameAlice,

both encrypted with Bob's public key. When Bob receives the message, he decrypts it wit
his own private key. Then Bob sends a message containing a nefiesh name among with
the name received fromAlice and his own name, encrypted with Alice's public key. Alice

recovers its fresh name and convinces herself that she hasmomunicated with Bob. If this is

true she sends to Bob the fresh name received from him encryptl with his public key. Then

if Bob recognizes his fresh name, he can be sure that he has commuatied with Alice.
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(1) Alice! Bob : fm;Alice gpungob)
(2) Bob! Alice : fm;n;Bobgp palice)
(3) Alice! Bob : fngeupBon)

One of the most important values stated on this model are the asumptions presented, which
certainly simplify the reasoning about security protocols Here we present the general ideas
about these assumptions exposed by Dolev and Yao in their wér

Cryptography is unbreakable: This means that although a satwteur can eavesdrop a
message, if the message is encrypted and the spy does not hdkie right decryption key,
it would not understand the meaning of the message.

Uniform Protocol: It means that the same protocol is used foreach pair of agents which
want to communicate

Active Intruder: Intruders are active agents who can eavestdop messages, masquerade
as a trusted users and participate in the protocol sending ad receiving messages.

The intruder does not know the behavior of the protocol.

We recall these concepts, since they are of the essence of alshall the security process calculi
we will present and analyze in our following section.

2.3 Process Calculi for Security Protocols

Security process calculi are those focused in modeling ancesifying security issues in com-
munication protocols. The  [Mil99] and the Spi calculus PG97a], CSP [Hoa83 and SPL
[Cra03] are one of those calculi which allow modeling this kind of poperties related to secu-
rity. This by means of the essential properties a secure pragss calculus must ful ll, such as
cryptographic primitives and fresh names generation, amog with the usual characteristics
any common process calculus must have. Although CSP is not gicisely a process algebra
concerned to security, we can use it because several worksrdenstrate that, by means of CSP
models based on abstract data types which represent cryptagphic and fresh names notions
several security protocols have been speci ed and veri ed @ccessfully.

Probably the and Spi calculus among CSP are ones of the most studied secupeocess
calculi in the present time. That is why we will focus in a desciption of both of them, among
with the SPL calculus, a recently proposed security protocblanguage based in the concept of
Petri nets. We will use these four examples to give a generalverview about security process
calculi.
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2.3.1 calculus: Proving Security using secure channels

Milner proposed the  calculus as a well founded mathematical model that represda pro-
cesses and their interactions over a dynamic environmentMil99]. The basic idea underlying
this calculus is the mobility of information; in this way, th e processes can interchange infor-
mation at the level of channels, allowing processes to accesmew resources over time. Such
mobility inherits the security risk of communicating systems. The rst attempt to formally
verify security properties was done by Milner, Parrow and Wdker at [MPW89]. They strongly
used the notion of private channels in order to show that give a protocol, the channels gen-
erated by the participants involved were never eavesdroppe by an outsider agent. In the
next lines we are going to outline the basic concepts of calculus, applying them to prove
security properties in communication.

2.3.1.1 Outline

Letx = m;n;:::;X;y;z;::: be anin nite set of names, also known as communication chanels,
and P = P;Q;R;::: a set of processes of the following form:

Pu=x(y)P | xhi:P j (PjQ) j (P+Q) j  (x)Pp j P
(2.2)

Where x(y):P and xhyi:P denotes the output and input process of a channel over x, re-
spectively. PjQ denotes the concurrent execution of processeB and Q, P + Q the non-
deterministic choice over P and Q, P the endless execution of the procesB. Finally one of
the main elements in the calculus to express security is the processX )P, which represents
the restriction (or binding) of the variable x with a fresh, unique and randomly generated
value known asnonce in the processP, and can be seen as the creation of a channel in the
context of P.

is devoted to processes and their interactions, so the semteos provides a clear de nition of
how the processes interact with each other and how terms arerppagated. The operational
semantics of calculus is based on structural congruence and reduction fas, giving enough
power to compare processes and show properties between theWith structural congruence,
two processes can be compared statically showing syntactiar structural similarities between
them. Structural congruence is useful to compare processédike a(x):b(x) and a(y):b(y), only
di erent in the selection of the name, but completely equivaent in their behavior. With
reduction rules we can trace how the interactions of each age in the protocol aect the

local knowledge of a process: in this way a procesa(x):P j a(y):Q) can be reduced in a
subsequent event a®® | Q[y=x] where Q[y=x] denotes thealpha conversionof the channel
y with X.
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Scope Extrusion The calculus allows the mobility of channels, based on its inteaction
rules. In this way, the input and output processes &(y):P jxhzi:Q) describe how processes
interact sending information over a public channel x. However, there are scenarios where
the creation of new channels is needed to ensure fresh and gaite communications between
agents, therefore ((x )(a(x):P) | ahyi:Q) allows the channelx to broad his scope only forP
and to be reached byQ using reduction rules. However, interaction itself does nbguarantee
secrecy properties, See the example below.

Example 2.1. Secrecy in the -Calculus

Let Alice, Bob and Steve be agents, such that

Alice ,  x(y)

Bob , xlmi

Steve , xleui

and

P , Alice jBob

P , Alice jBobj Steve

In this scenario Alice sends to Bob a namey via a public channelx. It is insecure since
anybody can receive messagg through channelx. However, Steve can receive any message
Alice sends to Bob. To avoid this situation, we restrict the tiannel x just to Alice and Bob

in the following way:

( x)(Alice jBob) j Steve

In this case the channel between Bob and Alice is restrictedbtthem and Steve can not eaves-
drop any message through it.

Using scope extrusion it is possible to model unguessablesets in the  calculus, so the
process that cannot access the channel will not known the se&ts involved.

As we can deduce by the example, this notion of secrecy, can lessumed as perfect. Never-
theless, that is actually an inconvenient because the secity of the model relies in how this
channel may be modeled, with possible security breaches it ay have and how these problems
may be suppressed. Therefore, we need a less abstract congcepmodel by which we could go
closer to the implementation of security in communications so we can understand the actual
security protocol running underneath the private channel and the possible security failures
it may present. That is when we can see the real importance of focess calculi particularly
focused in security.

From a practical point of view, implementing a secure commurication channel between two
points is not feasible, since there are no channels which cgprovide information transference
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without risk of interference or tampering. Although the concept of restricted channels is
certainly an abstraction, it is an essential tool for bringing to real life something close to the
concept of these channels.

2.3.2 Spi Calculus

The Spi calculus PG974], is an extension of the  calculus MPW89] specially designed
to deal with cryptographic protocols. As presented before,the calculus is a fairly con-
venient formalism to describe concurrent communication, #owing to model security issues
like authentication and secrecy in an abstract level. Howeer, the calculus does not in-
clude means to appropriately represent some security printives commonly used in describing
security protocols, such as encryption and decryption.

With this motivation in mind arises the Spi calculus, extending the  calculus with primitives
for encryption and decryption, with a precise semantics tha allows to reason about privacy
or authentication in the protocols. More speci cally, the security proofs in the Spi calculus
are based in a set of equivalences and reduction rules.

2.3.2.1 Spi Syntax

The extension of the syntax in the Spi calculus is basically omposed a set of terms, that can
be names or variables, and a set of processes. The set of terissde ned by the grammar
below:

L;M:N;::: = terms
Lm;n;::: names
XY,z variables
(m;n) Pair
0 Zero
suc(m) successor of m
H (m) Hashing
fmgn Shared key encryption
m* public key
m private key
f[m]g Public key encryption
[fmd] Private Key Signature

Table 2.2: Spi Terms

As messages can be composed by any number of components (@alicity), the constructions

of pairing must be included in the calculus without deeply exensions of the calculus (see
[MPW89]). The same argument is suited for the inclusion of primitives for integer treatment.
The basic features of the Spi calculus are the inclusion of pmitives for encryption, the

handling of shared keys as standard names, and the use of publand private keys of a
messagem as m* and m respectively. The syntax provides the necessary constru@ns
to express public and shared-key encryption, as well digitasigning. The inclusion of hash
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function H(m) without a reverse equation corresponds to the assumptionhat any message
converted with a perfect hash function cannot be inverted.

The Spi calculus includes processes as another syntactictda the grammar, which basically
denotes the inverse behavior of encryption and decryption pcesses, as well as signatures
veri cation. (See table 2.3)

P;Q;R::: = Processes
T As in equation 2.2
[m is n]P Match
0 Nil
Let (x;y)= MinP Pair Splitting
case mof 0:P suc(x): Q Integer Case
case L of fxg, inP Shared Key decryption
case L of f[x]gn inP Public Key decryption
case L of [fxg], inP Signature Check

Table 2.3: Spi Processes

2.3.2.2 Spi Semantics

The calculus, is based on a set of reduction rules which show howqcesses interact over
time. However, the Spi calculus introduces a new set of equalences and reductions that
operate over processes with cryptographic primitives, repesenting how the knowledgeof the

system is modi ed over time. The foundation of these rules ighe reaction relation introduced

in [Mil99]; such a relation basically states how processes sharing @mmon communication

channel in complementary processes can follow with their dssequent behavior. More specif-
ically, given two processes acting in parallelm(M ):Pjm(x):Q ! PjQ[x=M].

This notion has been used to declare reductions in the Spi calillus, extending it to express
synthesis and allowing to carry out reasoning about procesgvolution in a more convenient
way. Being more concrete, we can see the reductions of the Sgalculus as the following rules
for process of replication, matching, pair splitting, and decryption:

P > PjIP Replication
[MisM]IP > P Matching
let(x;y)=(M;N)inP > P [M=x][N;y] Pair Splitting
case0of 0:Psuc(x): Q > P Zero
casesudM) of O0:P suc(x): Q > Q[M=x] Successor
caseM gy of fxgy inP > P [M=x] Decryption

Table 2.4: SPi reduction rules

Given these rules, a more formal notion of equivalence is stad, to show how a processes A
and B, not always syntactically equivalent, can express thesame behavior. The concept of
structural equivalencescan express these similarities using a set of rules, and theotion of
reaction, which we can see in table2.5.
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(Struct Commutativity) (Struct Associativity)

5 (Struct Nil)

Pjo PiQ QjP Pi(QIR)  (PjQ)R
(m)(n)P__(n)(n)P (Struct Switch) W(SUUCI Drop) 5—p (Struct Re ection)
i i P>Q )

(M)(PIQ)_(n)PjO if n2fn (Q) (Struct Extrusion) — (Struct Reduction)
P _Q P Q QR o ppo
o P (Struct Symmetry) —5 7 (Struct Transitivity) Pj0 PY0 (Struct Parallel)
P—PO (Struct Res) P PP PY QQ (React Struct) PP pe (React Parallel)
(m)P  (m)pPO P! Q PiQ! PYQ

P! PO
(m)P T (m)Po (React Res)

Table 2.5: Spi Calculus operational semantics: Structuraland reaction rules

2.3.2.3 Security Proofs in the Spi Calculus

The Spi calculus provides two particular ways to cover seclty analysis: the rst guarantees
security properties relying on the concept of equivalencesln this way, properties like secrecy
for a protocol P that keeps a secret information X are expressed stating that the instance
of a protocol with the messageX is equivalent to the protocol with X © for every run in the
protocol and every messagé& °. The proofs consider an arbitrary environment where possite
attackers can receive and forge information, including newmessages in the network. This
approach is strongly based on the elegant concept of structal equivalence, needing to relate
every model to a sort of "magical”, correct and secure implemantation that does not disclose
any message received, making the proofs rather complicatepfhG97a]. To overcome these
di culties, a new set of semantic notions are introduced in the calculus. These concepts rely
on the notions of bisimulations and an inductive characterzation of reaction without appeal
to structural equivalence.

233 CSP

CSP [Hoa83 is an abstract language for describing systems of concuméagents which interact
via message exchange. lItis intended to be a multipurpose addpra: several specialized theories
could be constructed on top of its semantic model. In this way concrete formalisms can
be designed and proved using this theory, with an environmenespecially crafted for each
purpose. Security has not been a topic left away and severalpproaches for analyzing security
properties in protocols under this framework have been deveped. Later on we will show how
this can be possible.
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2.3.3.1 Syntax
Systems inCSP can be represented by processes which may interact with othe via a series
of events or actions.

Events: Actions or events are essential inCSP since they represent the interaction of pro-
cesses inside a system. The set of all possible events in wiia system may engage in is
denoted as . Events may be atomic in structure or may consist of several distinct elements.
In this way events in CSP can consist of di erent types of components. This is an impotant
issue, since several specialized theories such as secyrigguires working with abstract types
such as encrypted or signed messages.

An intuitive example for describing events could be a simplevending machine which delivers
sodas. Here we have two particular kinds of eventsCoin: The insertion of a coin in the slot
of the vending machine andSoda The extraction of a soda from the dispenser. Then we say
that the alphabet of this particular system = fCoin; Sodag

Communicating events: These particular type of events are dscribed by the pairc:v where ¢
denotes the name of a channel in which the communication take place, andv is the value of
the message which is intended to be passed through the channédParticularly c?v is de ned
as the input event in which the value v is received via channelc. While, the output event is
represented asclv.

Processes: These are the fundamental components of the calculus. The ¢ities described
using CSP by means of the events in which they may engage in.

These are the most common processes structures used in thialculus:

Stop This is the process that cannot generates events at all. Regsents a deadlock.
a! P Being P a process, it is only able to initially perform a before continuing asP.
P2 Q The processP choice Q can behave either asP or as Q.

2i21 Pi Indexed form of choice.

P u Q Non-deterministic choice.

u iz P; Indexed form of non-deterministic choice.

Pj[D]jQ Parallel composition betweenP and Q processes with the requirement that
they have to synchronize on any event that belongs to the synwronization set D.

Pj[fg]iQ or PjjjQ Parallel compaosition with no requirements.

ili iz1 Pi Indexed form parallel composition with no requirements
Processes inCSP can also be recursively de ned using equational operationsFor example,
a twinkling light which works forever can be de ned as follows:
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TwinklingLight = on! off ! Twinklinglight

2.3.3.2 Semantics

In CSP, the semantics of a proces® is de ned to be the sequence of eventst(aces(P)) in
which the process has engaged up to some moment.

Symbols (Traces)

hi The empty trace

hai a trace with just one element.

s A s restricted to A.

s # b The amount of times eventb appears on traces.
- Trace concatenation.

Sg the head ofs:

s The tail of s:

Traces of a Process

traces(Stop) = fhig
traces(c! P) = fhig [ fh ci- sjs 2 traces(P)g
traces(P2 Q) = gaces(P) [ traces(Q)

traces(2S) = ftraces(P)jP 2 Sg

traces(P u Q) gaces(P) [ traces(Q)

traces(uS) S’ftraces(P)j P 2 Sg

traces(Pj[D]jQ) fsj[D]jtjs 2 traces(P) " t 2 traces(Q)g

Table 2.6: CSP Operational Semantics

2.3.3.3 Verifying Properties in CSP Processes

An speci cation can be de ned as the set of essential requirments that an item or proce-
dure must ful ll. Therefore one can say that a process which atis es its own speci cation,
guarantees the properties stated in that set of requiremert. CSP speci cations are given as
predicates over traces. Hence we say that a proce$s satis es its speci cation S(tr) if all of
its traces satisfy S(tr).

Psat S(tr), 8 tr 2 traces(P) S(tr) (2.3)
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P sat S(tr) can be veri ed by calculating the traces of P directly from the de nitions, estab-
lishing that each of them meets the predicateS(tr). In other words, S(tr) is true whenever
its variables take values observed from procesB. Another way of checking that processP
satis es the speci cation predicate expressed over tracesis to make use of a set of composi-
tional proof rules, which allow speci cations of a process ¢ be deduced from speci cations of
their components; making use of inference rules with the fédwing structure.

premiss 1

premiss
[side  condition ]
conclusion

2.3.3.4 Security Protocols €SP

Security protocols work through the interaction of concurrent processes using message-exchanges
to communicate with each others. HenceCSP is an adequate tool for modeling all the par-
ticipants in network and the way in which they are composed asa whole system. Here we

will recall the work of Schneider in [Sch96¢ for explaining how security matters are modeled

in CSP.

The architecture of the system consists of a network of nodegwhere each node acts as
workstation for a particular user) which are able to communicate asynchronously by sending
messages to each other by using a medium which acts as a deliyeservice. The need of
security in the system arises from the fact that users in thisnetwork do not have control over
the medium, and in this way any malicious entity could interfere or intercept the messages
transmitted through the common space. This network is modeéd in CSP in the following
way:

NETWORK = (jjji2 user no NODE j)j[trans; rec]]MEDIUM

Where all nodes run in a concurrent way interacting with eachother through the medium by
means of two channels, one by which a node transfers messageshe medium (trans) and the
other by which receives the data from the medium (ec): Here each user communicates with a
particular node, and the nodes are the ones which interact though the medium. The USER
is omitted because this will be the one representing the eneyn So, as said before, all forms
of interference in the network will be modeled by an intruder processENEMY = NODE .
Now the network is de ned as follows:

NET = (jiji2 user no NODE j)j[trans;rec]]MEDIUM j[leak;kill;add JENEMY

Where the Enemy interacts with the medium by leaking, killing or adding messages.
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*~_ NETWORK
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trans:i transj

kill

Figure 2.7: Network environment in CSP

2.3.3.5 Modeling and Verifying Security Protocols GEP

Since CSP is not precisely a security process calculi, some generalegis have to be followed
before making use of its syntax, semantics and proof techniges. As a rst step, a particular
message space, according to the chosen protocol, has to beesped. For instance, if that
speci ¢ protocol works with public key encryption, an abstract data type which can capture
that cryptographic notion has to be de ned. For example a setof Messagesis de ned st.

MESSAGE =  PLAINTEXT JKEY JKEY (MESSAGE ) jMESSAGE:MESSAGE
PLAINTEXT ;= USER JTEXT |jPLAINTEXT:PLAINTEXT
KEY = PUBLIC jSECRET
Where
PUBLIC = fpji 2 USERg KEY
SECRET = fsji 2 USERg KEY
SECRET \ PUBLIC =;

Afterwards, a set of rules concerning the way messages can lgenerated from existing ones
must be de ned. These rules, obtained according to the parttular message space de ned from
the protocol to be modeled, will be useful for aiding the prod veri cation in CSP, acting as
basic principles.
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Then, the protocol has to be modeled using the syntax providd by this process algebra
and the security framework model de ned by Schneider. Theréore, each component in the
protocol must be de ned as a process with its inherent eventsepresenting their own behavior.
The processes have to be composed together with the medium drthe enemy de ned lately.

This composition is denoted as just one process named as theehvork.

Now focusing in the veri cation phase, several properties bthe participants in the protocol
have to be formalized, including the medium and the possibléntruders that may sabotage the
well operation of the network. These properties will combire information about the states and
events that have occurred during the run of the protocol. They will be useful later because
they will provide us a way of extracting the state of the systan from their trace. Before using
these speci c properties, they have to be veri ed by means ofthe rules obtained from the
space of messages.

As a last step, a compact speci cation of the whole network wiich represents the property
wanted to be proved, is modeled as a predicate over traces. #m, the network process is said
to be veri ed, if it satis es its own speci cation mentioned before.

The veri cation mechanism can be achieved by constructing & invariant predicate including
the precise reasons why the protocol is expected to work acoding to the stated properties,
verifying it by means of inference rules constructed from tle lately established properties and
the rules generated from the space of messages, specied ftire particular protocol. It is
said that the di culty in nding the adequate invariant for p  roving a particular property in
a protocol, may lead to the discovery of an attack. An exampleof how lengthy this kind of
proofs are, is shown in $ch96g Sch964.

Needham-Schroeder-Lowe protocol in CSP

Here we recall a CSP model of the NSL protocol presented inSch964. Here channelstrans
and rec are of type USER:.USER:MESSAGE . Where a messagdrans:i;;m should be
thought as a nodei sending a messagen with destination j, and rec:ji:m as a nodej
receiving a messagen from a nodei. It can be stated that the value preceded by an ? or by
an ! are the input and output values in the event. For example f we saytrans:i !j Im it means
that the sender (i) is already known and the receiver and message will be the optt values |
and m respectively. res:i:;j ?m means that the destination and the source are already known
and the only thing the event is awaiting is the message which Wl be m.

USER; = 2j2user trans:alilpi(ng:a) !
rec:a:i?pa(na:x:i) !
trans:alilpi(x) ! Stop

USER, = rec:b?a?py(y:a) !

trans:blalpa(y:np:b) !
rec:b:a:p(np) ! Stop
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234 SPL

SPL is a process calculus designed to model protocols and petheir security properties by
means of transitions and event-based semantics. SPL is bas®n the Dolev-Yao Model, so
the assumptions about cryptography and attackers explaind in section 2.2.3 are available
here. The calculus is operationally de ned in terms of con gurations containing items of
information (messages) which can only increase during evation, modeling the fact that in

an open network an intruder can see and remember any messageat was ever in transit.

2.3.4.1 SPL Syntax

The syntactic entities SPL are described below:

An in nite set N of names denoted byn; m;:::; A; B;::: Names range ovemonces (ran-
domly generated values, unique from previous choice$’gro€]) and agent names.

Three types of variables: over names (denoted by;y; = X;Y; ), overkeys (; ¢ 1;:%)
and over messages { & 1;::). They could also be expressed as a vector of variables,
denoted asx~"~ respectively.

A set of process, denoted byP; Q; R; ::..

Variables over names | x;y;:; X; Y0
Variables over keys PR
Variables

over messages

Name expressions v o= mA; X
Key expressions k == Pub(v) jPriv(v)jKey(®) j; %
Messages MM P = vikj (M;M 9jfMagej ; %
Processes p = outnew(x) M:p jinpatx~ M:p j kiz; P;i j!P
Table 2.7: SPL Syntax
Output hout new (x)M:p; s; ti outnewt ()M [y | p[A=A;s[f Ag;t[f M[A=x]gi if all the names in A are distinct and notin s

MR T ple=x k=~ N=";s;ti if M[A=xk=< N="]2 s

hpjssitith  plis%t

Input hinpat x~ M:p;s;t i
Par. Comp.

— where py = pjo for i = j; otherwise p; = pi
hkizy Pissitithk o) POsOti

Table 2.8: SPL Transition Semantics

The rest of the elements of SPL syntactic set are de ned in Talke 2.7, where P ub(v), Priv (v)
and Key (v) denote the generation of public, private and shared keys repectively. We use the
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2.3.4.2 Intuitive Description and Conventions

Let us now give some intuition and conventions for SPL proceses.

The output process outnew(x) M:p generates a set of fresh distinct names (noncesh =

M with each x; replaced with n;) in the store and resumes as the proceggn=:. The output

process binds the occurrence of the variablex in M and p. As an example of a typical
output, pa = outnew(x) fx; Agpune):p can be viewed as an agenA posting a message with
a noncen and its own identi er A encrypted with the public key of an agent B. We shall

write outnew(x) M:p simply as out M:p if the vector % is empty.

The input processinpatx~ "M:p is the other binder in SPL binding the occurrences ofx~"~
in M executing p. As an example of a typical input, pg = inpatx;Z fx;Zgpuys):p can be
seen as an agenB waiting for a message of the fornt x; Z g encrypted with its public key B:
If the message ofpa above is in the store, the chosen instantiation for matchingthe pattern
could be the alpha conversionf n=x; A=Z g, where n matchesx and A does the same withZ.
When no confusion arises we will sometimes abbreviata patx~ "M:p asinM:p.

Finally, ki2; P;j denotes the parallel composition of allP;. For example in ki a5 ¢ Pi the
processe$a and Pg above run in parallel so they can communicate. We shall useé® = ki, P

meanP1 k Py k ::: k Py

The syntactic notions of free variables and closed processiessage are de ned in an usual way.
A variable is free in a process/message is has a non-bound occurrence in thatgoess/message.
A process/message is said to belosedif it has no free variables.

2.3.4.3 Transition Semantics

SPL has a transition semantics over con gurations that represents the evolution of processes.
A con guration is de ned as Ip;s;ti where p is a closed process term (the process currently
executing), s a subset of named\ (the set of nonces generated so far), andl is a subset of
variable-free messages (i.e., the store of output messages

The transitions between con gurations are labelled by actions which can be input/output
and maybe tagged with an indexi indicating the parallel component performing the action.
Actions are thus given by the syntax ::= outnew(®)M jinM ji: : wherenis as a set of
names,i as an index andM a closed message.

Intuitively a transition hp;s;ti ' h p®s®t3 says that by executing the processp with s
andt evolves intop®with s®andt® The new set of message contains those int since output
messages are meant to be read but not removed by the input pr@sses. The rules in Table.8
de ne the transitions between con gurations. The rules are easily seen to realize the intuitive
behavior of processes given in the previous section.
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Nevertheless, SPL also provides amvent based semantigswhere events of the protocol and
their dependencies are made more explicit. This is advantagpus because events and their pre
and post-conditions form a Petri-net, so-called SPL nets.

2.3.4.4 Event-Based Semantics

Although transition semantics provide an appropriate method to show the behavior of con-
gurations, these are not enough to show dependencies betwa events, or to support typical
proof techniques based on maintenance of invariants alonghe trace of the protocols. To do
so, SPL presents an additional semantics based in events thallow to explicit protocol events

and their dependencies in a concrete way.

SPL event-based semantics are strictly related to persist& Petri nets, so called SPL-nets
[Cra03] de ning events in the way they a ect conditions. The reader may nd full details
about Petri Nets and all the elements of a SPL-Nets in Appendk A and [Cra03], below we
just recall some basic notions.

Description of Events in SPL In the event-based semantics of SPL, conditions take an impm

tant place as they represent some form of local state. Therera three kinds of conditions:

control, output and name conditions (denoted by C, O and N, respectively). C-conditions

includes input and output processes, possibly tagged by amiex. O-conditions are the only

persistent conditions in SPL-nets and consists of closed nssages output on network. Finally,

N -conditions denotes basically the set of name®l being used for a transition. In order to

denote pre and post conditions between events, lete = fCe?e;" eg denote the set of control,
name and output preconditions, ande = fe°; €°; €"g the equivalent set of postconditions. An
SPL eventeis a tuple e = (‘e; e) of the preconditions and postconditions ofe and each event
eis associated with a unique actionact(e). Figure 2.8 gives the general form of an SPL event.
The exact de nition of each element of the events can be foundn [Cra03].

To illustrate the elements of the event semantics, considea simple output evente = ( Out (out
newxM ); 1), where A = nq:::ny are distinct names to match with the variables x = x1:::X;.
The action act(e) corresponding to this event is the output action out newAM [A=x]: Conditions
related with this event are:

e= houtnew(x):M:p;ai °e=; "e=;
€® = hic(p[h=¥))i e =fM[a=xg €" =fny;:::ng

Where Ic(p) stands for the initial control conditions of a closed process p: The set Ic(p)
is de ned inductively as Ic(X) = fXgis X is an input or an output process, otherwise
lc(ki21 Pi)= 5, fi:cjc2lc(Pi)g
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Figure 2.8: Events and transitions of SPL event based semaits: p; and g denote con-
trol conditions, n; and m; name conditions andN;, M; output conditions. Double circled
conditions denote persistent events.

2.3.4.5 Relating Transition and Event Based Semantics

Transition and event based semantics are strongly relatedn SPL by the following theorem

from [Cra03]. The reduction M 1® MOwhereeis an event andM and M © are markings in

the SPL-net is de ned in the Appendix following the token game in Persistent Petri Nets (see

Appendix A).

Theorem 1. ) If hp;s;ti ' h p%s%tY, then for some event e with act(e) = , lc(p)[ s[ t !°
lc(P) [ s°[ t%in the SPL-net.

i) If lc(p)[ s[ t!'° M inthe SPL -net, then for some closed process termp® for some s N and t°

20, hp;s:ti T p%s%t% and M = 1c(p) [ s°[ t*

Justi ed in the theorem above, the following notation will b e used: Lete be an event,p be a
closed processs N; andt O:Wewrite hp;s;ti 'h p®s®tdi Ic(p)[s[t!® lc(pd[sT t°
in the SPL -net.

2.3.4.6 Events of a Process

Each process has its own related events, and for a particulaclosed process ternp, the set of
its related events Ev(p) is de ned by induction on size, in the following way:

S
f Out (outnewxM:p;A)g[ fEv(p[r=x])g

Ev(outnew xM:p)

Where n are distinct names

Ev(inpatx~ ™M:p )

Where 1 names, K are keys, andC are closed messages s
Ev(ki2ipi) = 21 TEV(P)
where, E is a set, andi : E denotes the setfi:eje2 Eg:

S
fin (inpatx~ M:p ; A;R;C)g[  fEV(p[R=xKk=~ [="])g

2.3.4.7 General Proof principles

Verifying security properties in SPL is not as tedious as in ¢her calculi since, its inherent
proof techniques are based on its own operational principe In other words, SPL uses its
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event based semantics to derive some general proof princgs, which capture the notion of
dependency between events in a protocol run. These principk, are of the essence of SPL's
proof techniques but they are not the only concepts used foriding the properties' veri cation.
The proofs are simpli ed by a result of the occurrence of the py events in the protocol run.
The result is based on the notion of surroundings of a messagaside another. These ideas
inherent from the calculus are the ones used to verify or comtdict the ful llment of any
security property in a protocol run.

From the net semantics we can derive several principles usd@fin proving authentication and
secrecy of security protocols. WriteM v M°to mean messageM is a subexpression of
messageM © i.e., v is the smallest binary relation on messages st:

<=L

v M
vN ) Mv N;N%ndM v NCN
vN ) M v Ng

where M;N; N are messages and k is a key expression. We also writt @t i 9M°M @
MO~ MO2 t, for a set of messages

Below we present a set of general proof principles stronglydsed on the work done by Federico
Crazzolara in [Cra03].

De nition 9  (Well-foundedness) Given a property P on con gurations, and P (po; So; o)
represents that con guration hpg;ro; Soi holds property P, if a run hpp; So; tol 1 ®
hpr;srtri e .1, contains con gurations st P (po; So; to) and : P(pj;sj;tj); then there is an
evente,; 0<h |; st. P(pi;si;tj) forall i<h and: P(pn;Sh;th):

We say that a namem 2 N is fresh on an evente if m 2 €" and we write Fresh(m;e)
De nition 10  (Freshness) Within a run
hoo;Soitol '™ i 1%h pris it e
the following properties hold:
1. If n 2 s; then either n 2 sy or there is a previous eventg st Fresh(n;eg;):
2. Given a namen there is at most one evente st Fresh(n;g;):
3. If Fresh(n;ej) then for all j <i the namen does not appear inhp;;sj; tji:
De nition 11  (Control Precedence) Within a run
hpo: Soitoi 1 1% posetd T oo

if b2 “g either b2 Ic(po) or there is an earlier eventg; j <i; stb2 g
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De nition 12  (Output-input Precedence.). Within a run
hpo;Sostol 1 i 1% poscted T o

if M 2 °g; then either M 2 tg or there is an earlier eventej; j <i; st. M 2 eJ°

De nition 13  (Output Principle.) . Within a run
hoo:Soitoi ' i 1%h posctd T oo

According to the message persistence in SPL8e, in a run, € €5 ; are the new messages
generated by evente, .

2.3.4.8 Message Surroundings

Given a pair of messagesM and N the surroundings of N in M are the smallest submessages
of M containing N under one level of encryption. So for example the surroundis ofKey (A)
in

(A; £B;Key (A)gk; fKey (A)gko)

are fB;Key (A)gk and fKey(A)gko: If N is a submessage oM but does not appear under
encryption in M then we take the surroundings ofN in M to be N itself.
For example the surroundings ofKey(A) in

(A; fB;Key (A)gk; Key(A))

arefB;Key (A)gx and Key(A):

Let M and N be two messages. De ne (N;M ) the surroundings of N in M inductively as
follows:

(N:v) - o oiIh':r;isVe

(N1 = 9 c:Ihgr;iske | 0
(N = f(('\'dm ;)[g (N;M ) cgh’:r;is'\él;M
(N:THod ) fhf(l\N/I;SIJ\‘/(Ig) oiihlglrv?/ise(l\l;'vl)0r "=
(N: ) - f g ifN=

otherwise
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2.3.4.9 Proving Security Properties with SPL

There are some general steps which must be followed in ordeotverify security properties
under this framework.

Any security property wanted to be veri ed must be modelled in a formal way. This can be
done in a very intuitive way, by means of the notions of messag surroundings, which capture
the most important concepts needed for representing secuyi predicates. Afterwards, in order
to ful ll the already formalized property, every event in th e protocol must be veried. An
adequate method for proving these properties over such di eent events is the contradiction
mechanism, by which one states a simple supposition, such ake existence of an event in
which the property is not achieved, and by means of the event dpendency presented in the
SPL language and the proof principles mentioned before, ongies to nd that the event which
must exist in order to broke the property never happens alongthe protocol run, as can be
seen in chapters3 and 4.

2.4 Discussion and Calculus Selection

Process Calculi can be seen as an accurate set of models thdloas to express the behavior
of communication protocols from an operational and intuitive way. A particularity of the
process calculi studied so far is the inclusion of elementshich allow covering several security
issues, such as:

1. Cryptographic primitives.

2. Fresh name generation,

3. Execution environments to formally verify security protocols and ways to model attack-
ers.

4. Well founded reasoning techniques specially devoted toover important aspects in se-
curity.

By means of these elements we will establish a comparison hwegen a representative set of
process calculi for security, in order to select the one bessuited for security analysis with
respect to the previous criteria. As can be seen in table.9.

Calculus Spi Calculus CSP SPL
1 Private Channels Available Available Available
2 Available Available Not Available Available
3 | Available / Linear Available / Linear Available / Linear Available / Monotonic
4 Not Available Available Available Available

Table 2.9: Comparative analysis between process calculi noerned to security

37



According to this items, the  Calculus, and a particular extension named the Spi calculus
de ne agents involved in communication tasks as processesteracting over a set of channels,
establishing scope rules and equivalences to determine whea message can be leaked by
an attacker. The Spi calculus goes further and adds a set of jmitives in the operational
semantics representing the operation of cryptographic dadtypes in concurrent comunication
like nonce generation and encryption, guaranteeing secusi properties by means of holding a
set of equivalence between Spi processes. However, althdutpe Spi calculus is well equipped
with a set of reduction rules that aids the analysis of equivéences PG97a]; one needs to relate
every model to a sort of "magical”, correct and secure implerentation that does not disclose
any message received, making the proofs rather complicateahd far from intuitive reasoning.

The abstract level of speci cation turns CSP as an optimal ogion to model di erent types of
protocols, such as those concerned to security. In fact, seval models are de ned to extent
the algebra with datatypes and properties for security [5ch96¢ RSG" 01]. However, a typical
proof includes the revision of the model from the scratch, dening particular environments,
attacker abilities, deduction rules and invariants for evay protocol. This approach makes
a proof very tedious and lengthy. Another disadvantage is tle lack of replication methods
for process or messages, something determinant to expredset persistence of messages in the
network and in nite behavior of process in communication, such as servers and P2P systems.

SPL provides a di erent approach for process calculi. It is $rongly based on event semantics,
which represents protocol evolution in a clear and intuitive manner, includes primitives to show
cryptography operations, is based on a persistent model ofetwork where each of the messages
sent is maintained for an unlimited period of time, represeiing the power of an attacker to
in nitely collect information from the network, and supply clear proof techniques where a
property is ensured if an event that violates the preconditons is found. This characteristic
turns to an ideal model well suited to security analysis in caocurrent and in nite systems,
which we will show in chapters 3 and 4.

2.5 Summary

Along this chapter, we present a general overview of the wayn which communication has
evolved through time, and the way in which security properties have arose as crucial concepts
when analyzing these kind of systems. We begin with a generatlea of communication used
in daily live, passing through more sophisticated conceptdy which this kind of systems are
modeled in an informal or formal way, and up to theories, algéras or process calculi by
which several characteristics such as security are veri edWe initiate with an introduction to
communication as a general concept, continuing our descrifpn path by presenting a general
overview of the rst approaches developed for studying commnication systems and we nish
with the notion of process calculi, where we present those dy concerned to communication
concurrent systems, such as CCS or the-calculus, and then, those which include some notions
about security, like the Spi-calculus, CSP, and SPL.
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We give out a deeper presentation of some important processatculi concerned to security,
where we present their basic principles, among with a genetadescription of their syntax
and their operational semantics. Showing their proof prindples by which these languages are
based, as well as some examples of simple protocols modelesing those languages.

After a brief discussion of the chapter, we choose the most agopriate security process cal-
culus, according to concurrency needs, expressive powelperational semantics and reasoning
techniques used to verify security protocols.
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3 MUTE Protocol: Secrecy over P2P systems

Peer to peer (P2P) systems rely on the concept of employing seral distributed resources,
such as computer power, data or network bandwidth, to perfom a critical function in a
decentralized way instead of concentrating in one central etity. Examples of tasks suitable for
this computing scheme include: distributed computing, dat content sharing, communication
and collaborative systems Ese02 BS04, GK03, BMWZ05, Rip01].

P2P networks lack of a clear notion of clients or servers. Allparticipants in these networks
are denoted as simply peers which, according to the circumances may work as clients, or
servers. In that way, there is no need of having a central enty by which a client requests
and receives any type of information; instead, the data ow may come from any peer inside
the network, since any peer can respond acting as a server. this way, there is a much lower
cost of ownership or sharing, since there is a use of an existeinfrastructure, and there is
also an elimination and reduction of maintenance costs, by @tributing jobs through all the
participants in the net.

Protocols for P2P systems are used to share private informdbn between peers, which usu-
ally involves security risks. Currently these systems are damatically receiving attention in
research, development and investment. They had become a maj force in the nowadays com-
puting world because of its huge amount of bene ts, such as & architecture cost, scalability,
viability, and resource aggregation of distributed managenent resources.

The P2P protocols used in various tools should maintain a nurber of important properties to
guarantee their well functioning. One of the most important properties in P2P protocols are
those concerned to security. Properties like secrecy and metraceability have been studied
in the literature in order to overcome security risks [MKL *02]. Secrecy is considered impor-
tant, since we may want to keep secret from an entity outside he P2P group, the messages
transmitted and managed between the components within the etwork. Obviously, in some
groups a malicious outsider may easily become an insider byighing up as a peer. However,
one can imagine situations when becoming a peer requires ttnew that the potential peer can
be trusted, or to provide certain information the outsider is not capable or willing to give.

Despite the popularity of this kind of systems, the importance of maintaining security matters
within them and the existence of di erent calculi to reason about protocols, to the best of
our knowledge, little has been done in modeling P2P protocal using process calculi.

40



In this chapter we are going to explore the security issues o& P2P system by modeling a
protocol widely used in these kind of systems known as MUTERRO5]. The general structure
we shall follow for modeling MUTE, will be the next: In our rs t part, we extract a formal
model directly from the implementation code. Then, using the SPL formalism along with its
compositional power, we establish the formal speci cationof the MUTE protocol searching
phase, modeling their components as a set of processes whialork together to achieve the
main goal of the protocol. Finally we use the proof technique of SPL to prove a secrecy
property for the messages in the network with respect to a matious outsider. In the second
part we make some modi cations into the original MUTE protoc ol, in order to guarantee a
much stronger secrecy property. By means of the SPL languagee specify this new protocol.
Then, using the language proof techniques, we verify the seecy property behind a saboteur
inside the network.

3.1 Protocol Description

MUTE is a P2P tool for sharing and transmitting resources in a highly dynamic distributed

network [RRO5]. It is based on a particular searching protocol, which clains to guarantee an
anonymous way of communicating data in a secure way throughhie P2P network. In spite of
being a real life protocol, MUTE has only been informally desribed. Following our original

approach, we shall use SPL to give a formal speci cation of te MUTE protocol.

The MUTE protocol works in a P2P network as a tool to communicate requests of keywords
through the net, so that an speci ¢ le can be found and then received RR05]. This protocol
is composed of two main phases: searching and routing partsWe will focus directly in its
rst phase, since it is the most related to the security concens related to our work.

This protocol aims to provide an easy and e ective search wHe protecting the privacy of the
participants involved. It is inspired in the behavior of ants in the search for food. Despite of
ants having a simpler brain than humans, they do have a colletively more intelligent route
nding technique than human beings. In principle, ants search for food in a very simple way,
they just walk randomly until reaching their target. The cru cial point is that each ant leaves
a trail of pheromones as it searches for food. In that way theyjust have to follow back their
own trail to reach their home. The essential fact in this behavior is concerned to the help
of each ant to the rest of the anthill by showing them the shortest path, even though they
do not have a special way of telling others which one is the bés The notion of pheromones
works again as the solution for this problem. Ants which go bak home following their own
trial, leave more pheromones along their way giving a much sbnger scent to the path and
attracting more ants in that way [ DS04].

This notion of routing in ants colonies, plays a very important role in some P2P protocols
such as MUTE. The analogy between ants route nding technique and P2P protocols is
accomplished by representing each ant as a node of a networkes requested as food, and
pheromones as traces. In this way, one of the key propertiesf ahis model is the inherent
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anonymity of the protocol, because, as the ants that ignore he shortest path between the
food and the anthill, peers are unaware of the overall enviroment layout and MUTE messages
must be directed through the network using only local hints®.

Since the MUTE protocol claims to have anonymous users, nonef the nodes in the P2P
network knows where to nd a particular recipient. Each node in the MUTE network contains
direct connections to other nodes in the network in order to @hieve its desired search. This
nodes are called "neighbors" and through these, messageseasecretly passed, either as a
request or as an answer, in such a way that no agent outside thpeer to peer network could
manage to understand any of these data. Despite anonymity bhiag essential on this protocol,
secrecy is also one of its main goals, since transmitted megges along the network involve
information only concerned to the ones sharing the resourceand must not be revealed to the
outside world.

3.2 Dolev-Yao Representation

In spite of being already implemented and used as a tool for denloading and sharing les,
to our knowledge MUTE has not yet been formally speci ed. Part of our work consists in
abstracting from the code elements that have an impact in searity.

De nition 14  (Sets in Mute). Let Files be the set of all les in the P2P network and
Files(A) the set of les belonging to peerA. Let Keywords be the set of keywords associated
to the les Files, Keywords(A) the keywords associated to the peeA and Keys the relation
Files : Keywords, representing the keywords associated to a particular le.Let Headers be
the set of headers of les, which is associated t&iles, Headers(A) the set directly related to
Files(A), such that each header which belongs tdHeaders(A) will be associated to a unique
le belonging to Files(A).

De nition 15  (P2P Network model). We shall describe a P2P network as an undirected
graph G whose nodes represent the peers and whose edges mean theaiomnnections among
them. We usePeers(G) to denote the set of all nodes inG. Given a nodeX 2 Peers(G), Let
ngh(X) be the set of immediate neighbors oX . We use the Dolev-Yao notationX ! Y : M
stating that X sends a messagh®l to Y:

For Example, consider a P2P networkG with A;B 2 Peers(G). Suppose that A initiates
the protocol by broadcasting a request to all its neighborsm order to nd a particular answer,
and B is the agent which has the desired answer that is searching for, deciding to send a
response. In this caseB can be any node inside the network with the desired le on its $ore.
A requests for a particular le he wishes to download, sendinghe request to the network by
broadcasting it to his neighbors. This request includes a kgword kw 2 Keywords, which
will match the desired le, and a nonce N which will act as the request identi er. Along the
searching path an unknown amount of peers will forward the rguest until B is reached, the

! Abstracting from the MUTE website, available at [ RRO5]
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peer with the correct le st. 9f 2 Files(B) and kw 2 Keys(f). Then, B sends its response
by means of the header of the leRES, among with the identier N and a new nhameM
generated by it to recognize the message as an answer. Thisd®ne again by broadcasting
the message through a series of forward steps, until reachinthe actual senderA. Figure 3.1
give a representation of the above description using Dolewao notation [DY81].

Al Xt (FNKW Geeyax )i A X)) for X 2 ngh(A)
X1 oY (FNJKW Geeyxiy 1 X3 Y) for Y 2 ngh(X)

Z! B: (fN;Kngey(Z;B);Z;B)
B! X% (fN;RES;M Gkeyax 0, A X9 for X°2 ngl(B)
X% YO0 (fN;RES;M geyxovo; X%Y9Y  for Y02 ngh(X)

Z%  A:  (fN;RES;M Qkey(zoa); Z%A)

Figure 3.1: Dolev-Yao Model of the MUTE protocol

HereX;Y; Z are variables which represent the peers which forward the nmesage along the path
going from agentA to B. This process may continue until the target is reached. Meawhile
the X ® Y% ZOvariables will represent the peers which will forward the arswer from B to A.
This process may be repeated several times as well.

3.3 An SPL Specication of MUTE

We use the core of the MUTE protocol in order to establish somesecurity properties, assum-
ing a previous connection stage between neighbors. The phes that we shall consider are the
ones involving the transmission of a keyword, the response essage and the keys, and the sub-
messages including plaintexts. We assume that the symmeirikeyskey(A;B) = key(B;A):
The formal model is presented in Figure3.2, introducing a notation (kj2; Pj):R as a valid
construction easily encoded, wherdR could be any kind of process in the language, as can be
seen below:

(ki21 Pi):R = outnew(T) x:(ki2| Pi:outfXgpynt)) K (in fXgpub(Ti))l ‘R
Where:
(iNfXGpun(t))' = IN FXGpup(ry): i XGpun(r,) N f XGp i, )

In MUTE there are essentially three main roles which descrile the behavior of the peers in
the whole process: The initiator, the intermediator and the responder. The initiator is the
agent that starts the protocol by means of a request, the intemediator the one that forwards
the message request and the responder, the peer which has thetual answer for the request
and sends back the response in order to answer the initiatos' query. Any peer inside the
network can execute any of these roles.
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The composition of three processes representing the main les in MUTE give form to the
following model:

Init (A) (K 2 ngb(a) outnew(n)(fn; Kw geey (as ); AiB))

(Ky 2 ngb(ay IN (fN;res; Mgy (v:a); Y; A))
Interm (A) ' Ky 2 ngb(a) iIN(FM Gkey (via); Y5 A) 1K 2 ngb(a)f vg OUt(fM Okey(aB )i A B)
Resp(A) K v 2 ngb(A) ;kw 2 Keys (Files (A)) 1IN (FX; KW Okey (v:a); Y A)

(K 2 ngb(ayoutnew(m)(f x; res; mgyey (ag ): A B))

Node(A) Init (A) k Interm (A) k Resp(A)
SecureMUTE K A2 peers (c)Node(A)

Figure 3.2: MUTE speci cation on SPL

We assume that the topology of the net has already been estaished. A typical execution of
the protocol starts with the initiator searching for an own keyword. This agent broadcasts
the desired keyword to all its neighbors kg 2ngna)outnew(n) (fn; Kw gkey a;z);AsB)). Its
neighbors receive the message and check if the keyword mat one of their les (Ky 2 ngn(a) :
kw 2 Keys (Files (A)) 1N (FX; KW gkey (v:a); Y; A)) @ If at least one of the neighbors have the re-
quested keyword, then such a neighbor will broadcast a respse messagkg » ngp(a) OUt Nnew(m)
(fx;res;mgey(az): A B), such that eventually the peer searching for the keyword wil get
this responsein (fn;res; mgyey(v:a); Y;A) and understands it as an answer to its request.
The message will be forwarded by all the agents until it reacks its destiny (g 2 ngha)f vg
out (fM gyey(az); A;B)). Otherwise, if the keyword does not match any le of the agent,
then it will broadcast it to its neighbors asking them for the same keyword Kg 2 ngna)f vg
out (fM grey(az); AB)). The choice of having or not the right le is modeled in a non-
deterministic way. This model abstracts away from issues sch as the search for the best
path, since it has no impact in secrecy.

3.4 Events

De nition 16  (Events in MUTE) . The event g, is an event in the set

Ev(MUTE) = Init : Ev(pinit ) [ Interm : EV(Pinterm ) [ Resp : EV(Presp) [ SPY : EV(Pspy)

Where the events are graphically represented in gures3.3, 3.4 and 3.5.

3.4.1 Initiator Events

The initiator events indicate the behavior of processinit (A). This process can be splitted
in two main sub-processes: an output that generates a new naenn and a request message
(fn;kwgkey (a8 ): A B) over the store (gure 3.3(a)), and an input process that receives the
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answer messagef; res; mggey (a:z): A, B) via an input action in (fn;res; mgkey (a):A'B),
as can be seen in gure3.3(b).

w : B outnew(n)(f n; kwgkey (ag); A;B)
Init (A) :j :in(

outnew(n)(fn; kWgkey(a); A; B)

Init (A):j :in (fn;res; Mgxey (v.a); Y A)

fn;res; Makey(viay: YiA)  (FN;res; Moey(viay: Y; A)

(fn; kWkey(am): A1 B) in (fn; res; Mgey(v:ay; Y5 A)

(a) Initiator Output (b) Initiator Input

Figure 3.3: Initiator Events

3.4.2 Intermediator Events

Each agent acting as an intermediator has to forward the recwed messages. The gure
3.4(a) illustrates the event in which the intermediator receives the messagef(M gkey (v:a); Y: A)
via an input action in (fM gkey (v:a); Y;A). The composition of a second subprocess ( gure
3.4(b)) completes the intermeditator behavior, forwarding receved message$! to one of the
neighbors by means of an outputout (f M gkey (a8 ): A B).

Interm (A) :j :Y 2 in (fM Qeey(viny: Y3 A)

(FM Gkey(v:a): Y3 A)

Interm (A) :j : B : out(f M Qeeyaz): AsB)
in (f M gKey(Y;A); Y; A)

%l out(f M Gkey(as )i A B)
Interm (A) :j : B : oUt(fM Qkeya ); A; B) (FM Gey(am); AT B) @

(a) Intermediator Input (b) Intermediator Output
Figure 3.4: Intermediator Events

3.4.3 Responder Events

The responder events indicate the way in which an agent actig as a responder must behave.
A responder agent is basically composed by two processes: Amitial input (gure 3.5(a)) that
awaits for a message requestf 0; kwgkey (v:a); Y;A), and a subsequent output of the answer
(fn;res;mgkey (a8 ): A B) via an output action out (fn;res;mggey (a:z): A B), with a new
namem (gure 3.5(h)).
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Resp(A) @ j : B outnew(m)(f x; res; Mgkey(a;z); A; B)

AN

in (fn;kwgey (via)i YiA) | | outnew(m)(fx; res; Mgiey(az); A; B)

5 @ @ (fX; res; Mkey(a )i A B)
Resp(A) :j : B : outnew(m)(f X; res; Mguey(a); A; B)

(a) Responder Input (b) Responder Input

Resp(A) 1] & in (fn;KWGkey(via): Y3 A) (fn; KWQkey (via); Y A) Q

Figure 3.5: Responder Events
3.5 MUTE Secrecy Proofs behind an Outsider Spy
Here we will establish the secrecy of MUTE for a Spy outside tke P2P network

3.5.1 De nition of the Spy

Using a well studied model of spy Cra03], a possible attacker over the network is presented
in table 3.1

Compose di erent messages into a single tuple Spyr  in qiin glout 15 2

Decompose a compose message into more componentSpy, in  1; »:out iout »

Encrypt any message with the keys that are available | Spys inx:in out f gpyy)
Spys inKey (X;y):in out f Okey(xy)

Decrypt messages with available keys Spys inPriv (x):in f gpypx)-out
Spye inKey (X;y):in f gkey (xy)-0Ut

Sign with available keys Spy; Priv(x):in out f gpiy ()

Verify signatures with available keys Spys inxin f gpyy (x):out

Create new random values Spys outnew(n)A

Table 3.1: SPL spy model
Finally, the complete Spy is a parallel composition of theSpy;, processes:

Spy K i 2f l:::9gSpyi (3-1)

In this way, the complete protocol includes the speci cation of MUTE, SecureMute in Figure
3.2, in parallel with the Spy:

MUTE SecureMUTEK!Spy (3.2)

To Analyze secrecy of a given protocol in SPL, one considersfitrary runs of the protocol.
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De nition 17  (Run of a Protocol). A run of a processp = pg is a sequence
hpo; So; toi ! W puSwitwi T

We shall use in the theorems a binary relation@ between messages, de ned i12.3.4.7.

3.5.2 Secrecy Proofs in MUTE

To guarantee an important security property such as secrecybehind an outsider spy over
distributed environments such as the one presented in MUTEwe must follow a series of steps
which include several individual proofs before ensuring tie property for the whole protocol.

As the rst step we must verify that the shared keys used by pees inside the network for
encrypting messages sent between them, are never leaked thg message transmissions. This
is actually a very important property since it ensures that information encrypted with these
keys, is never understood by saboteurs outside the P2P netwk.

Then, assuming that those keys are never leaked, we can veyifthe secrecy properties for
the two kinds of messages transmitted along the protocol, te answer and the request. A
very straightforward way of verifying that those messages e kept as a secret is to present a
stronger property stating that answers and requests alwaysppear inside messages encrypted
with the shared keys, and since we know that messages encrygt with these keys can never
be decrypted by outsiders, therefore the secrecy propertyof answers and requests is ful lled.
In order to verify this property, each output event occurring in the protocol must be veri ed,
to ensure that there is no message where answers or requesfpaar in non ciphered messages.
Then, if the secrecy property for answers and requests is agkhved in a protocol run, we can
state that the whole protocol ful lls the secrecy property.

3.5.2.1 Secrecy property for shared keys

This theorem for the MUTE protocol concerns the shared keys bneighbors. If this shared
keys are not corrupted from the start and the peers behave ashte protocol states then the
keys will not be leaked during a protocol run. If we assume tha key(X;Y ) 6vtg, where X;Y
2 Peers, then at the initial state of the run there is no danger of corruption. This will help
us to prove some other security properties for MUTE.

Theorem 2. Given a run of MUTE and Ag;Bg 2 Peers(G), if key(Ag;Bg) 6vtp then at
each stage w in the runkey(Ag; Bg) 6vty

Proof. Suppose there is a run of MUTE in whichkey(Ao; Bp) appears on a message sent over
the network. This means, sincekey(Ag; Bg) 6Vvtg, that there is a stagew > 0 in the run st.

key(Ao; Bo) 6vty, 1 and key(Ag;Bo) v tw
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Where e, 2 EV(MUTE) (De nition 16) and by the token game of nets with persistent con-
ditions, is st.

key(Ao;Bo) v e

As can easily be checked by using the events de ned iB.4, the shape of everylnit or Interm
or Resp event

e 2 Init : Ev(pinit ) [ Interm : EV(Pinterm ) [ Resp @ EV(Presp)
is st.
key(Ao;Bg) 6ve°
The event e, can therefore only be a spy event. Ife, 2 Spy : Ev(pspy), however by control

precedence and the token game, there must be an earlier stagein the run, u < w st.
key(Ao; Bo) v ty, which is a contradiction. O

3.5.2.2 Secrecy property for the request

The following theorem concerns the secrecy property for therequest. It states that the
keyword asked by the initiator and broadcasted through the retwork will never be visible for
a Spy outside the P2P group.

Theorem 3. Given a run of MUTE and Ap 2 Peers(G) and kwg 2 Keywords(Ay), if for
all peersA and Bkey(A;B) 6vtg, whereB 2 ngh(A) and the run contains Init event a;
labelled with action

act(ag) = Init : (Ao) : io : Bo : outnew(no)(f no; KWoGkey(ao:8,): Ao; Bo)

whereig is a session index andg is an index which belongs to the seingb(Ag); ng is a name
and kwp is a keyword, then at every stagew in the run kwg 62t

Proof. We state a stronger property:

Qp;sit) ,  (kwo;t) f (fno; kWoGkey(ao:B0): Aos Bo)g

If we can show that at every stagew in the run Q(pw;Sw;tw) holds, then clearly kwgy 62t,,
for every stagew in the run. Suppose the contrary. By freshness clearlyQ(MUTE ; sp; to).
By well-foundedness, letv be the rst stage in the run st. : Q(py; Sv;ty). From the freshness
principle it follows that
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az ! ey

Wheree, 2 EV(MUTE) (De nition  16) and from the token game ( no; kWoQkey(a,:80): Ao Bo) 2
(kwp;ty 1) (Because messages are persistent in the net). From the tokegame of nets with
persistent conditions we have

(kwo;€) €} 1) 6 f(fno; kwoOkey(ao:Bo): Ao; Bo)g (3.3)

Clearly e, can only be an output event sincee) €9 ; = ; for all input events e. Examining
the output events of Ev(MUTE) we conclude that e, 62Ev(MUTE) reaching a contradiction.

In the following lines we will explore each output event in the protocol in order to verify that
the event e, is di erent to all of them.

Initiator output events.
act(ey) = Init : (A):j : B :outnew(n)(fn;kwgeyag): A B)

where A 2 Peerg(G) and so A 2 sp and kw 2 Keywords(A) and sokw 2 sy, wheren is a
name,j is a session index and is an index which belongs to the setngh(A). Property 3.3
and the de nition of message surroundings imply that9 v (fn;kwgeyaz); AiB) tkwo v
Then kwg v (fn;kwgeyag):A;B). Since A;/B 2 Peers(G) and A;B 2 sp, fresh-
ness implies thatkwp 6 A and kwo 6 B. Since fn;kwgyeyaz) iS @ cyphertext, kwg v
fn;kwgeyas)- If kwo = kw then one reaches a contradiction to property3.3 because from
the output principle if follows that € &) ; = ff no; kWoOkey(ao:80): Ao; Bog. Sincekwg 2 so
freshness implies thatn 6 kwg. Therefore e, cannot be anlnit event with the above action.

Intermediator output events.

act(ey) = Interm :(A):j :B:
out (fM Gyey(ag); AsB)

Case 1. M = (n;kw))

act(ey) = Interm :(A):] : B :out(fn;kwgeyags):A B)
where A 2 Peers(G) and so A 2 sp and kw 2 Keywords and sokw 2 sg, wheren is a
name,j is a session index and is an index which belongs to the setngh(A) f Yg; where
Y 2 ngh(A) and it is the sender/forwarder of the message. Property3.3 and the de nition

of message surroundings imply that9 v (fn;kwgeyag);A;B):kwo v . Then kwgp v
(fn;kwgeya:z);A;B). Since A;B 2 Peers(G) and then A;B 2 sp and freshness implies

49



that kwp 6 A andkwg & B, and sincef n; kwgyey(a:g ) iS @ cyphertext, kwp v f n; kwgyey(ag )-
If kwp = kw then a contradiction to property 3.3is reached, because from the output principle
if follows that € &) ; = ff no;kWoQkey(a:5):A;Bg. Then, from the de nition of message
surroundings and Property 3.3 kwg = n. By control precedence there exists an eveng, in
the run st.

e,! ey

and
act(ey) = Interm : (A):j 1Y in (fkwo; KWGkey(y:a): Yi A)

By the token game

(fkwo; kWkey(v:a); YiA) 2 ty 1
wherekwg 6 ng and so: Q(py 1;Su 1;tu 1) which is a contradiction sinceu <v

Case 2: M = (n;res;m))

act(ey) = Interm :(A):j :B:
out(fn;res; Mgeyas); A B)

where A 2 Peerg(G) and so A 2 sy and res 2 Headers and sores 2 sp, where n;m
are names,j is a session index andB is an index which belongs to the setngh(A) f Yg;
where Y 2 ngh(A) and it is the sender/forwarder of the message. Property3.3 and the
de nition of message surroundings imply that 9 v (fn;res;mgceya);A;B) kwg v
Then kwo v (fn;res;mgeya);A;B). Since A;B 2 Peers(G) and then A;B 2 sp and
freshness implies thatkwo 6 A and kwp 6 B, and sincefn;res;mgeyag) is @ cyphertext,
kwo v f n;res;mgey(az), and from the freshness propertykwg 6 res, so if property 3.3
holds, then kwg = n or kwg = m and eithern 8 ng or m 6 mg: By control precedence
there exists an evente, in the run st.

ey! ey

and
act(ey) = Interm :(A):j 1Y iin (fn;res;Mgceyy:a): Y: A)

By the token game

(fn;res; Makey(v;a); Y5 A) 2 tu 1

and: Q(py 1;Su 1;tu 1) since (kwo;res; mgkey(v:a); Y;A) 2 (kwo;ty 1) or (fn;res; kwWoGkey(v:a);
Y;A) 2 (kwo;ty 1), and then (kwo;ty 1) 6 (fno; kWoGkey(ao:80):Aos Bo) A contradiction
follows becauseu < v:
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Responder output events.

act(ey) : Resp: (A):j :B:
outnew(m)(fn;res; Mgyeyag): A B)

where A 2 Peers(G) and soA 2 sp and res 2 Headers(A) and sores 2 sp, wheren; m are
names,j is a session index and® is an index which belongs to the sehgh(A). Property 3.3and
the de nition of message surroundings imply that9 v (fn;res;mggeya:z);A;B) :kwg v
Then kwp v (fn;res;mgeyaz);A;B). Since A;B 2 Peerg(G) and then A;B 2 sp and
freshness implies thatkwg 6 A and kwp 6 B, and sincefn;res;mgeyag) is @ cyphertext,
kwo v f n;res;mggeya:), and from the freshness property it follows that m 6 kwp and
res 6 kwp, therefore since property 3.3 holds and by de nition of message surroundings
kwg = n. By control precedence there exists an eveng, in the run st.

ey! ey
and
act(ey) = Resp: (A) 1] :in(fkwo; kWQey(y:a): Y;A)
By the token game
(Fkwo; kWgkey(v:a)s Y3 A) 2 ty 1

Where kwg 6 ng and so: Q(py 1;Su 1;tu 1) which is a contradiction sinceu <v

Spy output events. An assumption of the theorem is that the shared keys are not laked,
meaning that for all peersA and B key(A;B) 6vty. At every stage w in the run key(A;B) 6v
tw (Theorem 2). Since this there is no possible way for a spy to reackwg, e, is not a spy
event. O

3.5.2.3 Secrecy property for the answer

The next theorem states that the message sent as an answer byheé responder will never
appear as a cleartext during a run of the MUTE protocol, and in this way nobody outside
the peer to peer boundaries will understand it.

Theorem 4. Given a run of MUTE and Ag 2 Peers(G) and resg 2 Headers(By), if for all
peersA and Bkey(A;B) 6vtg, where B 2 ngl(A) and if the run contains a Resp event b,
labelled with action

act(bp) = Resp: (Ag):ip:Bo:
outnew(mo)(f no; reso; MoGkey(ao:B,): Aos Bo)

whereig is a session indexBg is an index which belongs to the sengh(Ag); ng; mg are names
and resg 2 Headers(Bg) and then at every stagew resg 62,
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Proof. We show a stronger property such as this:

Q(p:;s;t),  (reso;t) f (fno;reso;, MoGkey(az):AiB)g

If we can show that at every stagew in the run Q(pw;sw;tw) Then clearly resg 62, for every
stagew in the run.Suppose the contrary. Suppose that at some stagenithe run property Q
does not hold, by freshness clearhl Q(MUTE ; sg;tp). Let v by well-foundedness, be the rst
stage in the run st. : Q(py;Sy;ty). From the freshness principle it follows that

! ey

Wheree, 2 EV(MUTE) (De nition  16) and from the token game ¢ no; reso; MoGkey(ao:8,): Aos Bo)
2 (resp;ty 1) (messages on the network are persistent). From the token gae of nets with
persistent conditions the evente, is st.

(reso;e) € 1) 6 f(fno;reso; MoGkey(Ao:Bo): Ao; Bo)d (3.4)

Clearly e, can only be an output event sincee) € , = ; for all input events e. We examine
the possible output events of EV(MUTE) and conclude that e, 62Ev(MUTE), reaching a
contradiction.

In the following lines we will explore each output event in the protocol in order to verify that
the event e, is di erent to all of them.

Initiator output events.
act(ey) = Init : (A):] : B :outnew(n)(fn;kwgeyag): A B)

where A 2 Peers(G) and so A 2 sgp and kw 2 Keywords(A) and sokw 2 sg, where n is a
name,j is a session index and is an index which belongs to the sengh(A). Property 3.4and
the de nition of message surroundings imply that 9 v (fn;kwgeyaz);A;B) :reso v
Then resp v (fn;kwgyeyaz);A;B). Since A;B 2 Peers(G) and then A;B 2 sp and
freshness implies thatresp 6 A and resp 6 B, and sincefn;kwgeya.g) iS a cyphertext,
reso vV f n;kwgeya:g ), and from the freshness principle it follows thatn & resp and reso &
kw becausekw 2 sy and kw 2 Keywords and resg 2 Files and Files 6 Keywords, therefore
e, can't be alnit output event with the above action.

Intermediator output events.

act(ey) = Interm :(A):j :B :out(fM geeyar):AsB)
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Case 1: M = (n;kw))

act(ey) = Interm : (A):j :B:
out (fn; ngkey(A;B ) AB )

where A 2 Peersand soA 2 sg and kw 2 Keywords and wheren is a namej is a session
index and B is an index which belongs to the sengh(A) f YgwhereY 2 ngh(A) an it is the
sender/forwarder of the message. Property3.4 and the de nition of message surroundings
imply that 9 v (fn;kwgeyag);AsB):resp v . Then resg v (fn;kweyag):AB).
Since A;B 2 Peers(G) and then A;B 2 sy and freshness implies thatresp 6 A and
resp 8 B, and sincef n; kwgeya:g) is a cyphertext, reso v f n; kwgyey(az ) Sincekw 2 sg the
freshness de nition implies that resg 6 kw, soresyg = n: By control precedence there exists
an event g, in the run st.

e,! ey
and
act(ey) = Interm : (A) 1] 1Y rin(freso; kWQiey(y:ay: Y A)
By the token game
(freso; kKWokey(v:a): YiA) 2ty 1

whereresy 6 ng and so: Q(py 1;Su 1;tu 1;resp), which is a contradiction sinceu <v.

Case 2: M = (n;res;m))

act(ey) = Interm : (A):j :B:
out (fn;res; Mgey(az); AsB)

where A 2 Peers(G) and soA 2 sp and res 2 Headers and sores 2 sg, where n;m are
names,j is a session index and is an index which belongs to the seingh(A) f Yg; where
Y 2 ngh(A) and it is the sender/forwarder of the message. Property3.4 and the de nition
of message surroundings implies thatd v (fn;res;mgyeyaz);AsB):resp v. . Then
reso v (fn;res;mgeeyaz);A;B). SinceA;B 2 Peerg(G) and then A;B 2 sp and freshness
implies that reso 6 A andresp 6 B, and sincef n;res; mgyey(a;g) is @ cyphertext, if property
3.4 holds, thenresg = n; orresg = res or resp = m and eithern 6 ng or res 6 resg or
m 6 mg: By control precedence there exists an eveng, in the run st.

ey! ev
And
act(ey) = Interm :(A):j 1Y 1in (fn;res;mgceyy:a): Yi A)
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By the token game

(fn;res; mgey(y:a): Y:A) 2 ty 1

and : Q(py 1;Su 1;tu 1) since eithern 6 ng or res 6 resp or m 6 mg: A contradiction
follows becauseau < v:

Responder output events.

act(ey) : Resp: (A) :j : B routnew(m)(fn;res; mggeya:z);A;B)

where A 2 Peers(G) and so A 2 sp and res 2 Headers(A) and sores 2 sg, wheren;m are
names,j is a session index and® is an index which belongs to the sehgh(A). Property 3.4and
the de nition of message surroundings implies that9 2 (fn;res; mgyeya:z);A;B):reso v

. Then resg v (fn;res;mgkey(A;m;A;B). Since A;B 2 Peers(G) and then A;B 2 sp and
freshness implies thatresp 6 A and resp 6 B, and sincefn;res; mgey(as) is @ cyphertext,
reso vV f n;res;mgey(a:z) and the freshness property follows thatresp 6 m, if reso = res
we reach a contradiction to property 3.4 because from the output principle it follows that
ey € 1 = ff no;reso; MoGkey(as ); AsB 9. Then resg = n By control precedence there exists
an event g, in the run st.

ey! ev
and
act(ey) = Resp: (A) 1] :in(freso; kWhkey(v:a); Y; A)

By the token game

(freso; KWokey(v;a): YiA) 2ty 1

Whereresg 6 ng so: Q(pu 1;Su 1;tu 1;resp), which is a contradiction sinceu <v.

Spy output events. An assumption of the theorem is that the shared keys are not laked,
meaning that for all peersA and B key(A; B) 6vtg. At every stagew in the run key(A; B) 6vty,
(Theorem 2). Since this there is no possible way for a spy to reactkwg, e, is not a spy
event. O

3.6 Insider Attacks, and Mod MUTE

The secrecy proofs used to verify the mute protocol so far suce to bridge the gap between
formal models and ad-hoc protocols, mostly devoted to fundbnality instead of correctness.
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However the execution environment for the protocol used in bhe proofs is restricted to cases
where a spy is located outside the network, like a snier seathing for packages over the
internet. In a more realistic scenario, a spy can get insidetlie network emulating a trustful
peer, exposing the network to an attack calledThe man in the middle [HutO1], acquiring or
modifying the information about the request and the transfer using the direct connections
between naive users. In the following section, we include aew component in the protocol,
and broaden our environment including an insider spy in orde to explore how the secrecy is
accomplished with attacks inside the network.

3.6.1 A new component in MUTE

One of the most important changes in the protocol is the inclision of a File Controller
Table which aims to guarantee the consistency of the search in therptocol. Basically the
le controller will hold the information about a le, its pub lic key and a set of associated
keywords, in such a way that whenever an agent requests a keysd it will immediately have
the public keys related to the les which may have a relation with that particular keyword.
This table is constructed by means of the union of several laal tables associated to each peer
in the network, which hold information about the les, their keywords and their associated
public and private keys. This component is crucial in order to ensure the secrecy properties
intended because, for each le in the table, a public key and grivate key are generated by
the owner based on unmodi able attributes, such as a hash oftie le, recording both of them
in its local table, and just sharing the public one with the | e controller table. In this way the
inclusion of this new element in the protocol avoids attackssuch as theman in the middle,
since the only capable of understanding a request will be th@ne having the secret key and
so the le.

| File | Public Key | Keywords \

le://u2/unchained QGIBEOTNNCRBADYS8x/KI unchained melody , U2,

melody.mp3 NNTTXTyTMa+fD4Inherin The best of 1980 - 1990,
4zvNNnTR3SLebUF0447vzK::: Rock, etc

Figure 3.6: File Controller entry structure example

We assume that the le controller is a general entity possiby stored in a supernode, which
is based on partial information present in every local tablebelonging to each agent in the
protocol.

3.6.1.1 Presuming Con dentiality for the request keyword

We assume that any peer inside the network having a keywordkw, could immediately have
the pub(file ), when kw belongs tofile . So, in this fashion, that peer could send a message
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requesting a le, with nobody capable of understanding the nessage unless it had the proper
le for the request. As can be seen, for an intruder to get a mesage or to become a real
threat for any normal peer inside the network, it must have a vast amount of les to have the
chance of understanding their messages. And even if the inider did have the le, and so,
its correspondant priv (file ), it would be very di cult for it to decrypt the message witht he
right key, due to its massive amount of les. This assumptionturns to be true if we suppose
that a normal peer has for examplen les in its own store, while an intruder according to
its needs, should have an obvious greater amount of les. Soyhile a simple peer needs a
polynomial time to decrypt a message, an intruder would takean exponential time to do
the work, something relatively big, that will ensure the imp ossibility of understanding the
message, ensuring at the same time the con dentiality of it. Based on this assumption, we
will state that the only one who can decrypt the message is theone who has the le, in this
way we presume its good intentions.

3.6.1.2 Con dentiality for the reply

The le sent as an answer is kept as a secret because, when thedipient gets the search
keyword, it also receives a public key to encrypt the answerand the initiator is the only one
with the corresponding private key to decrypt the answer.

3.6.2 Dolev-Yao Model

We recall some de nitions established in3.2.

Example: Let us consider a P2P networkG with nodes A;B; X;Y;Z: Suppose thatA is the

initiator of the protocol. A requests a particular le it wis hes to download. For this purpose
it sends the request to the network by broadcasting it to its neighbors. This request includes
the public key of the le pul(file ) associated to the search keyworckw 2 Keywords, and

the new public key pub(s) associated to the initiator for encrypting the answer, which will

be sent back. This message will be forwarded until it reaches peer which has the correct
le. In this case B st. 9f 2 Files(B), kw 2 Keys(f) and kw is related to pub(f ). Then, B

sends the answerres; st. res 2 Headers(B) (where res is the header off ), encrypted with

the public key sent in the request by the initiator, by means d a broadcast through a series
of forward steps until the target is reached, in this case seder A.

3.6.3 Specication on SPL

In this section we model an abstraction of the MUTE protocol among with the modi cations
related to the security for the answer and the request, statd in the proposal. We will only
use a core of the protocaol, just the phases involved with the tansmission of the request, the
answer message and the keys.
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Al Xt (FN; fpub(s)Gpunrile ) key(ax )i Ay X ) where X 2 ngh(A)

X VYo (FN;fpul(s)gounile ) Okeyx;y s X; Y ) where Y 2 ngh(X)
Y I B (fN;fpub(s)gpuntie )Ikey(v:a: Y; B) where B 2 ngh(Y)

B! X : (fN;fRESQunis): M Geye:x ) B; X') where X 2 ngh(B)
XY (FN;FRESGpuns)s M Gkey(x:y ); X; Y ) where Y 2 ngh(X)

Y1 A (fN;fRESGpuns): M Oeey(y:ay; Y A) where A 2 ngl(Y)

Figure 3.7: Dolev-Yao Model of the Modi ed MUTE protocol

Init (A) (Kg 2 ngb(ayout new(n; s) (f n; f pub(s)gpun file ) Gkey (a8 y: A B)):
(ky 2 ngb(A) in (fn;f resgpub(s)s MOkey (v:a); Y A))
Interm (A) '(Ky 2 ngb(a) in (FM Qkey (v;a): YiA):Kg2ngb(a) v OUt(fM Qyey(aB ); A B))
Resp (A) (Ky 2 ngb(a) :file 2files (a) IN (FX; fpub(S)Qoun fie yOkey (v:a): Y1 A):
Kg 2 ngb(a) Out new(m) (f X; fresgpup(sy; MOkey (a:8 )3 A B))
Node (A) Init (A)kinterm (A) kResp(A)
Modi edSecureMute K a2peers(c) Node(A)

Figure 3.8: Modi ed MUTE speci cation on SPL

For the modeling and veri cation process we recall the same d nitions stated in 3.2

We will state that the secrecy properties for the requests ad answers do hold in the modi ed
MUTE protocol for a spy inside the network.

3.6.4 Events

De nition 18  (Events in ModMUTE) . The event g, is in the set:
Ev(ModMUTE) Init : Ev(pinit ) [ Interm : EV(Pinterm ) [ Resp : EV(Presp) [ Spy :
Ev(pspy)

Where the events ofInit;Interm and Resp are de ned in gures 3.9, 3.10and 3.11

3.6.4.1 Initiator Events

The initiator events in the modi ed MUTE protocol resembles the events presented for the
initial version in section 3.4.1, where two kinds of actions are available: The former output
action outnew(n; s) (f n; f pub(s)gpun(rile ) Ikey (a:8 ); A; B') which generates new names); s and
a request messagef 0; f pub(s)gpunrile ) Ikey (a:8 ); A; B ) directly to the store. The latter action
is the input of the answer, receiving a messsagef ; f resgpun(s); Mkey (aB): A B) via an
action in (fn; fresgyups); Mkey (as): A B)
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Q Init (A) :j : B : out new(n; s)(f n; f pub(s)Gpusite ) Okey(aiz ): A B)

Init (A) 1 j - in (fn; fresgouys); Mkeyv:ay: Yi A)
out new(n; s)(f n; f pub(s) Gpurtite ) Gkeyas ) As B)

/ (fn; fresgpur(s); MOkey(v;a); Y5 A)
@ @ (1 n;  PUB(S) Gputrie eyt )i AT B)
Init (A) 2 < in (Fn; fresgouns); MOkeycvay; Yi A) [ T in(fn;fresgpuys); Mkeyy:a); Y: A
(a) Initiator Input (b) Initiator Output

Figure 3.9: ModMUTE Initiator Events

3.6.4.2 Intermediator Events

Each agent acting as an intermediator has to forward the reciwed messages. The gure8.10(a)
illustrates the event in which the intermediator receives the messagef(M gkey (v:a); Y; A) via an
input action in (fM gkey (v:a); Y;A). The composition of a second subprocess ( gureé.10(b))
completes the intermeditator behavior, forwarding received message$/ to one of the neigh-
bors by means of an outputout (f M gkey (a:): A B).

Q Interm (A) 2 j 0 Y 1 in (fM Geeyev:ay Y A)

@ (FM Gheygry; Yi A)

in (fM Okey(Y:A); Y5 A)

Q Interm (A) @ j : B : out(f M Gkey(a); A B) @ (fM Gkeyaiz); AsB)

(a) Intermediator Input (b) Intermediator Output

O Interm (A) : j : B : out(f M Gkeyaz); A; B)

‘ | out(f M Okey(A;B)» A;B)

Figure 3.10: ModMUTE Intermediator Events

3.6.4.3 Responder Events

The structure of the events for the responder in ModMUTE clealy resembles the responder
events used in the original version, presented in sectior3.4.3 The principal di erence lies
in the message structure used by the agent. The input procesawaits for a message request
(f n; f pub(s) Gpuntite ) Ikey (v:a); Y3 A) Via an input in (fn; f pub(s)gpunriie ) Okey (v:a); Y5 A), and
the following response output a messagef (; f resgyup(s): MOkey (a:8 ) A; B ) with a new name
m.
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Resp(A) 1]+ in (fn; f pull(s)Gouriie ) Gkey(viay Y A) Resp(A) 1 j : B : outnew(m)(fX; f resgpus(s); Mkey(az ); A; B)

% @ (f n; f pul(s) Gputcrile ) keycviays Y3 A)
/ outnew(m)(f X; f resgpur(s); Mkey(as ); A B)

C—— 7 in (Fn;f pub(s)Gputrile ) Gkey(via); Y3 A) \
Resp(A) 1 j : B : outnew(m)(fx; f resgouys); MOkeyaz): A; B) (fX; f restpun(s); Mkey(as ); A; B)
(a) Responder Input (b) Responder Output

Figure 3.11: ModMUTE Responder Events

3.6.5 De nition of the Spy

We use the de nition of a powerful spy used in3.5.1to model the ways of intrusion and attack
that an agent can do.

ModifiedMUTE ModifiedSecureMUTE k!Spy

3.6.6 Assumptions

Assumption 1 (Presumed Innocence): Since the only way for decrypting a message
request is having the le related to the keyword. We assume tlat the one with the le will
be a friend and will actually lend it to the requester.

Assumption 2 (Work without an end): The only way for decrypting a request is having
the le. So supposing that a normal peer hasn les in its own store, an intruder should have

a greater amount of les, so it could have a higher possibiliy for decrypting the message. We
assume an exponential amount of les which will give the malcious entity a higher chance of
having a le, but will give it an exponential and impossible amount of work.

3.6.7 Secrecy Proofs in the Modied MUTE

To verify a security property such as secrecy behind an insidr spy in P2P protocols like the
modi ed MUTE, we must follow the same general steps used in3.5, but with some subtle
modi cations that will enable to prove a much stronger property than the one veri ed for the
MUTE protocol. In this case, the only present di erence is that, since we want to guarantee a
solid property such as secrecy behind an intruder which can msquerade as a trusted peer, we
must also ensure in our premise, that private keys which are sed to encrypt speci ¢ classi ed
parts of the message, are never leaked to intruders inside éhnetwork.
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3.6.7.1 Secrecy Properties for Shared Keys

The rst secrecy theorem for the Modi ed MUTE protocol, rega rds the shared keys of neigh-
bors. |If this shared keys are not corrupted from the start and the peers behave as the
protocol states, then the keys will not be leaked during a préocol run. If we assume that
key(X;Y ) 6vtp, where X;Y 2 Peers, then at the initial state of the run, there is no dan-
ger of corruption. Later on this will help us to prove some other security properties for our
protocol.

Theorem 5. Given a run of the Modied MUTE protocol and Ag;Bg 2 PeersG), if
key(Ap; Bpg) 62ty then at each stagew in the run key(Ag; Bg) 62ty

Proof. Suppose there is a run of the Modi ed MUTE in which key(Ag;Bg) appears on a
message sent over the network. This means, sindeey(Ag; Bg) 6\, that there is a stage
w > 0in the run st.

key(Ao; Bo) 6My 1 and key(Ag;Bo) v tw

Where e, 2 Ev(M0odMUTE) (de nition 18) and by the token game of nets with persistent
conditions, is st.

key(Ao;Bo) v €,
As can easily be checked ir8.6.4, the shape of everylnit or Interm or Resp event

e 2 Init : Ev(pini) [ Interm : EV(pinterm ) [ Resp: EV(Presp)

is st.
key(Ao; Bo)6\e°

The event e, can therefore only be a Spy event. Ifey, 2 Spy : Ev(pspy), however by
control precedence and the token game, we would nd an earlytage u in the run, u < w st.
key(Ag;Bo) v ty and therefore we would reach a contradiction. O

3.6.7.2 Secrecy Property for Private Keys of the les

The second theorem for the Modi ed MUTE protocol is related to the private keys of the les,
denoted as the decryption keys for le headers. If this privde keys are not corrupted from
the start of the protocol, then, they will not be leaked during a protocol run. If we assume
that priv (f) 6@g wheref 2 files, then at the initial state of the run, there is no danger
of corruption. This, among other theorems, will be really useful for proving more security
properties in the Modi ed MUTE protocol.
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Theorem 6. Given a run of the Modi ed MUTE, and fqo 2 files, if priv(fp) 6\ then at
each stagew in the run priv (fg) 6\

Proof. Suppose there is a run of the Modi ed MUTE in which priv (f g) appears on a message
sent over the network. This means, sincepriv (f o) 6\g, that there is a stagew > 0 in the run
st.

priv (fo) 6@y 1 and priv(fo) v tw

Where e, 2 Ev(ModMUTE) (de nition 18) and by the token game of nets with persistent
conditions, is st.

priv (fo) v €
As can easily be checked, the shape of eveiyit or Interm or Resp event
e 2 Init : Ev(pini ) [ Interm : EV(Pinterm ) [ Resp : EV(Presp)
st. priv (fo) 6\&°

The event e, can therefore only be a Spy event. Ifey, 2 Spy : Ev(pspy), however by
control precedence and the token game we would nd an early stgeu in the run, u < w st.
priv (fo) v ty and therefore we reach a contradiction. O

3.6.7.3 Secrecy Property for Private Keys of the names gateel by the initiator

The third theorem for the Modi ed MUTE protocol regards the p rivate keys of the names
generated by the initiator. If these private keys are not corupted from the start, and the

nodes in the network behave as the protocol states, then theskeys will not be leaked during
a protocol run. If we assume thatpriv (s) 6Mg where s is a name generated by the initiator,
then at the initial state of the run there is no danger of corruption. This theorem will help

us to prove some other security properties within the protool.

Theorem 7. Given a run of the Modi ed MUTE and sp is a name generated by the initiator,
if priv (sg) 6\to then at each stagew in the run, priv (sg) 6\

Proof. Suppose there is a run of the Modi ed MUTE in which priv (Sg) appears on a message
sent over the network. This means, sincepriv (Sg) 6\, there is a stagew > 0 in the run st.

priv (sp) 6\My, 1 and priv (sp) vV tw

Where e, 2 Ev(ModMUTE) (de nition 18) and by the token game of nets with persistent
conditions, is st.
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priv (so) v €

As can easily be checked ir8.6.4, the shape of everylnit or Interm or Resp event.

e 2 Init : Ev(pini) [ Interm : EV(pinerm ) [ Resp : EV(Presp)

is st. priv (sp) 6\°

The event e, can therefore only be a Spy event, iley, 2 Spy : Ev(pspy), however by control
precedence and the token game, we would nd an early stagel in the run, u < w st.
priv (sp) v ty and therefore a contradiction is reached. O

3.6.7.4 Secrecy Property for the Request

In this case there is no searching keyword to keep as a secrefhere is the need of maintaining
secret the public key which will encrypt the answer le and which will be sent back to the
initiator. This should be kept as a secret to guarantee that the one who will use it to encrypt
the answer, is the real owner of the le.

The following theorem states that the request, broadcastedby the protocol initiator, will
never be visible by any peer inside the network, unless it hashe the real answer to that
request.

Theorem 8. Given a run of the Modi ed MUTE and Ag 2 Peers(G) and fo 2 files, if
for all peers A and B key(A;B) 6vg, where B 2 ngh(A), and priv (fo) 6\o, assumingthe
presumed innocenceand the work without an endassumptions, the run contains anlnit event
a; labeled with action

act(ag) = Init : (Ao) : ip : Bo : outnew(no;so) (fno; f pub(so)Gpunt o) key(Ao:Bo): Ao; Bo)

Where ip is a session index,Bg is an index which belongs to the setngh(Ag), ng and sg
are names,fg a le and pul(sp) an encrypting public key, then at every stagew in the run
pUb(So) 62ty

Proof. We state a stronger property such as this:

Q(p;s;t) ,  (pub(sp);t) T (fno;fpul(So)Gpunto)Ikey(a:B ): Aos Bo)g

If we can show that in every stageQ(pw; Sw;tw). Then clearly pub(sg) 62t,, for every stage
w in the run. Suppose that at some stage in the run the property @es not hold. Letv, by
well-foundedness, be the rst stage in the run st.: Q(py;Sy;ty). From the freshness principle
it follows that

62



a ! e

and from the token gamef (f no; f pul(so)Jpun(t o) Gkey(ao:Bo): Aoi Bo)d 2 (pul(sp);ty 1) (Be-
cause messages are persistent in the net). Wher 2 Ev(ModMUTE) (de nition 18) and
from the token game of nets with persistent conditions is st.

(pub(so); € € 1) 6 f(fno;fPub(So)Tpun(to)Tkey(ao:Bo): Ao B0)g (3.5)

Clearly e, can only be an output event sincee) €9 ; = ; for all input events e. Examining
the output events of Ev(ModMUTE) we conclude that e, 62 Ev(ModMUTE) reaching a
contradiction.

In the following lines we will explore each output event in the protocol in order to verify that
the event g, is di erent to all of them.

Initiator output events.
act(ey) = Init : A :j @B :outnew(n;s)(fn;fpul(s)gyunrie )Ikeya:z ) A B)

Where A 2 Peers(G) soA 2 sp and file 2 files sofile 2 sp. Where n and s are names,
puh(s) is a public key associated to the names, | is a session index and® is an index which
belongs to the setngh(A), and B 2 Peers(G) soB 2 sp. Property 3.5 and the de nition
of message surroundings imply thatpub(sp) v (fn;fpul(s)gpun(rile )Ikey(a):AsB). Since
A;B 2 Peers(G) and then A;B 2 sgp; freshness implies thatpub(sp) 6 A and pub(sp) 6 B.
Since f n; f pul(s)Gpun(iitle ) Ikey(ap ) 1S @ cyphertext, pub(so) v f n;fpub(s)gpunile ) Gkey(aB )-
From the freshness principle it follows that pub(sp) & n and since f pul(so)Jpunile ) IS
a cyphertext, pub(sp) v f pub(s)gpunie ). If pub(sop) = pul(s) then one reaches a con-
tradiction to property 3.5 because from the output principle it follows that €5 € ; =
(fno; f pub(So) Gount ) Gkey(A0:Bo): Ao Bo). Therefore e, cannot be aninit event with the above
action.

Intermediator output events.
act(ey) = Interm : (A) @] : B : out(fM geeya);AiB)
Case 1: M = (n;fpul(s)Gpuntie )
act(ey) = Interm : (A) : ] : B : out(fn;fpub(s)gyupie ) Gkey(az ): A B)

Where A 2 Peers(G) soA 2 sp and file 2 files sofile 2 sp. Where n and s are names,
pul(s) is a public key associated to the names, | is a session index and® is an index which

63



belongs to the setngh(A) Y, andB 2 Peers(G)soB 2 sy. Property 3.5and the de nition
of message surroundings imply thatpub(sp) v (fn;fpul(s)gyupsie )Okey(az): A B). Since
A;B 2 Peers(G) and then A;B 2 sp; freshness implies thatpub(sg) 6 A and pub(sp) 6 B.
Since f n; f pub(s)gpunrile ) Gkey(a;p) 1S @ cyphertext, pub(so) v f n;fpub(s)gpunile ) Ikey(a )-
Sincef pul(s) gpuniile ) is @ cyphertext and property 3.5 must hold, we rst say that pub(so) =
n. By control precedence there exists an eveng, in the run st.

e ! ey
And
act(ey) = Interm : (A) @ j © Y o in (fpul(so); f pub(s)Gpunile ) Gkey(y:a); Y A)

By the token game

fpub(so); f puL(s) Gpun(tile ) Iey(y:a) 2 tu 1

Where pub(sg) & ngthen: Q(py 1;Su 1;tu 1). A contradiction follows becauseu < v.

Since property 3.5 has not been fullled and fpul(s)gounrie ) IS @ cyphertext, pub(sp) Vv

f pub(s)gpunrile y- If pub(sp) = pul(s) then a contradiction to property 3.5is achieved because
from the output principle it follows that €) €} ; = (fno;fpul(So)Gpun(t o) Ikey(ao:Bo): Ao: Bo).
Therefore e, cannot be aninterm event.

Case 2. M = (n; fresgyups); M)

act(ey) = Interm : (A) : ] : B : out(fn;fresgouns): Mkey(as )i AiB)

Where A 2 Peers(G) soA 2 sy andres 2 Headers sores 2 so. Where n;m and s are
names,pul(s) is a public key associated to the names, j is a session index and is an index
which belongs to the setngh(A) Y, andB 2 Peers(G) and soB 2 sp. Property 3.5and

the de nition of message surroundings imply that pub(sp) v (f nfresgyuns): MOkey(a): AsB).

SinceA 2 sp and B 2 sp; freshness follows thatpub(sp) 6 A and pub(sg) 6 B and

sincefn; fresgouns): Mkey(a ) IS @ cyphertext, pub(sp) v f n;fresgouns): MOkey(az)- Since
fresgpun(s) is @ cyphertext and since property3.5 must hold, and by the de nition of message
surroundings, we rst say that pub(sg) = n or pub(sg) = m. By control precedence there
exists an evente, in the run st.

e ! ey
And
act(ey) = Interm : (A) 1] Y in (fn;fresgyups): Mkey(v:a): Y A)
By the token game

fn; f resgoub(s) Mkey(v:a) 2 tu 1
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and : Q(pu 1;Su 1;tu 1) since (fpub(so); fresgpunis); MOkey(v:a); Y;A) 2 (pul(so);ty 1) or
(fn; fresgyup(s); PUB(S0) Gkey(v:a); Y3 A) 2 (pub(so);tu 1), and then

(pul(sp);tu 1) 6 f(fno; fpub(So)dpun(ts)Gkey(a:z): Aos Bo)gd. A contradiction follows be-
causeu < v.
Since property 3.5 has not been ful lled and f resgyys) is a cyphertext, pub(so) v f resgyyps),
then pub(sg) = res. By control precedence there exists an eveng, in the run st.

ey! ey
And

act(ey) = Interm : (A) 1 j :in Y o (fn; fpub(so)Qpub(s): MOkey(y:a): YiA)
By the token game

(fn; f pub(So) Gpun(s) s Mkey(v:a); Y A) 2 tu 1

Where pub(sg) 6 resg and so: Q(py 1;Su 1;tu 1). A contradiction follows becauseu < v.

Responder output events.
act(ey) = Resp: (A) : ] : B : outnew(m) (fn;fresgpuns): Mkeya:z): A B)

Where A 2 Peers(G) soA 2 spandres 2 files sores 2 so. Where n;m and s are names,
pul(s), is a public key associated to the names, | is a session index and is an index which
belongs to the setngh(A), and B 2 Peers(G) soB 2 sg. Property 3.5 and the de nition of

message surroundings imply thatpub(so) v (fn;fresgpuys): Mkey(as): AsB). SinceA;B 2

Peers(G) and then A;B 2 sp; freshness implies thatpul(sy) 6 A and pub(sg) 6 B, and
since fn; fresgyups): Mkey(az) 1S @ cyphertext, pub(so) v f n;fresgyups); MOkey(a:z)- BY
the property of freshnessm 6 pub(sp) and sincefresg,ys) is a cyphertext and property 3.5
must hold, and by the de nition of message surroundings, we rst state that pub(sp) = n.
By control precedence there exists an eveng, in the run st.

ey ! ey
And

act(ey) = Resp: (A) 1] :in (fpub(so); f pub(s)Gpunile ) Ikey(v;ay; YiA)

By the token game

(f pub(so); f puUB(S) Gpun(file ) ey (v;a): YiA) 2 ty 1
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Where pub(sg) 6 ng and so: Q(py 1;Su 1;tu 1). A contradiction follows becauseu < v.
Since property 3.5 has not been ful lled and f resg,s) is a cyphertext, pul(sp) v f resgpps)-
Sinceres 2 sgpub(s) 6 res Therefore e, cannot be anResp event with the above action.

Spy output events. An assumption of the theorem is that the shared keys and the pivate
key of the le are not leaked, meaning that for all peersA and B key(A;B) 6vto and priv (f o)
6\tp. At every stage w in the run key(A;B); priv (fo) 6vt,, (Theorems5, 6). Since this, there
is no possible way for a spy to reactpul(sp), e, is not a spy event. O

3.6.7.5 Secrecy Property for the Answer
This theorem establishes that the answer, sent by the respatter peer, will be kept as a secret
for every peer di erent from the initiator.

Theorem 9. Given a run of the Modi ed MUTE and Ag 2 Peers(G) andresg 2 files (Ap),
if for all peers A and B key(A;B) 6¥g, whereB 2 ngh(A), priv (s) 61y and the run contains
a Resp event a, labeled with action

act(az) = Resp: (Ag) : ip : outnew(mg) (fno;fresoGpun(sy): MoGkey(ao:B0): Ao Bo)

Where ig is a session indexBg is an index which belongs to the seingh(A), ng mg, are names
and resg 2 files (Bg) and then at every stagew resy 62t,.

Proof. We show a stronger property such as this

Q(p;s;t) ,  (reso;t) T (fno;fresoQpun(sy)s Mokey(Ao:Bo)s Aos Bo)d

If we can show that at every stagew in the run Q(pw;sw;tw) then clearly resy 62t,, for every
stage in the run, property Q does not hold, by freshness clearlyNlodMUTE ;s;t), Let v by
well-foundedness, be the rst stage in the run st.: Q(py;sv;ty). From the freshness principle
it follows that

ap ! ey

and from the token game € no; f resogpun(sy): Mokey(Ao:Bo): AosBo) 2 (resp;ty 1) (Because
messages are persistent in the net). Where, 2 Ev(ModMUTE) (de nition 18) and from the
token game of nets with persistent conditions the evente, is st.

(reso;€) € 1) 6 f(fno; fresoGpun(so): MoGkey(Ao:Bo): Ao; Bo)d (3.6)

Clearly e, can only be an output event sinceed € ; = ; for all input events e. We examine
the possible output events of Ev(ModMUTE) and conclude that e, 62 Ev(ModMUTE),
reaching a contradiction.
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In the following lines we will explore each output event in the protocol in order to verify that
the event g, is di erent to all of them.

Initiator output events.
act(e,) = Init :j : B : outnew(n;s)(fn;fpub(s)gounie ) Ikey(as ): AsB)

Where A 2 Peers(G) soA 2 sp and file 2 files. Where n and s are names,pub(s) is a
public key associated to the names, | is a session index and is an index which belongs
to the set ngh(A), and B 2 Peers(G) and soB 2 sg. Property 3.6 and the de nition of

message surroundings imply thatresp v (fn; f pub(s)gopuntile ) Ikey(ag )i AsB). Since A;B 2

Peers(G) and then A;B 2 sg; freshness implies thatresyp 6 A and resg 6 B, and since
fn; f pub(s) Gpunrile ) Okey(ag ) IS @ cyphertext, reso Vv f n; f publ(s)gpun(rile ) Gkey(a;z)- From the
freshness principle it follows thatreso & n and sincef pub(so)gpunrile ) IS @ cyphertext, reso v

fpub(s)gpunrie y- By the property of freshnessresp 8 pub(s). Then e, cannot be anInit

event with the above action.

Intermediator output events.
act(ey) = Interm : (A) :j : B : out(fM Qeeyaz):AiB)
Case 1: M = (n;fpul(s)gpuntie )))
act(ey) = Interm : (A) ;] : B : out(fn;fpub(s)gyupie ) Gkey(az ): A B)

Where A 2 Peers(G) so A 2 sp, wheren and s are names, pub(s) is a public key as-
sociated to the names, | is a session index andB is an index which belongs to the set
ngh(A) Y,andB 2 Peers(G) and soB 2 sp. By property 3.6 and the the de nition

of message surroundings it follows thatresp v (fn; f pub(s)gpun(rile ) Gkey(a y; AsB). Since
A;B 2 Peers(G) and then A;B 2 sp; freshness implies thatreso 6 A and resp 6 B, and

sincef n; f pub(s)gyuncrile ) key(a;a ) IS @ cyphertext, reso v f n; f pub(s)gpunrile ) Gkey(ag ). Since
f pub(s)gpun(rile ) is @ cyphertext and property 3.6 must hold, we rst say that n = resp. By
control precedence there exists an eveng, in the run st.

e ! ey
And
act(ey) = Interm : (A) @ j 1Y :in (freso;fpub(s)gounile ) key(v:a): Y A)

By the token game

(freso; f pub(s) Gpun(tile ) Gkey(v:a); Y3 A) 2 tu 1
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Where resg 6 ng and so: Q(pu 1;Su 1;tu 1). A contradiction follows becauseu < v.
Since property 3.6 has not been ful lled and f pub(s)gounie ) IS @ cyphertext, resg v

f pub(s)Qpungrie y- Then resp = puk(s). By control precedence there exists an eveng, in the
run st.

e ! &y
And
act(ey) = Interm : (A) :j @Y :in (fn;fresoQpunile )Okey(v:a); Y5 A)

By the token game

(fn; fresoGpuntile ) Okey(v:a): Y:A) 2 ty 1

Where resg 6 pub(s) and so: Q(py 1;Su 1;tu 1)- A contradiction follows becauseu < v.
Case 2: M = (n; fresgyups); M))

act(ey) = Interm : (A) : ] : B : out(fn;fresgouns): Mkeyae )i AiB)

Where A 2 Peers(G) so A 2 sp, wheren; m and s are names, pul(s) is a public key
associated to the names, | is a session index andB is an index which belongs to the set
ngh(A) Y,andB 2 Peers(G) and soB 2 sp. Property 3.6 and the de nition of message
surroundings imply that resp v (fn;fresgoups): Mkeya):;AsB). SinceA 2 spand B 2

So; freshness follows thatresyp 8 A andrespy 6 B and sincefn; fresgyuys); MOkey(as) IS @
cyphertext, reso v f n; fresgouns); MOkey(a)- Sincefresgyyys) is a cyphertext and property

3.6 must hold, by the de nition of message surroundings, we rst state that reso = n or

resp = m. By control precedence there exists an eveng, in the run st.

ey ! ey
and
act(ey) = Interm : (A) 1] 1Y :in (fn;fresgpuns): Mkey(y:a): Y A)

By the token game

(fn;f r€SOpuny(s) » mgkey(Y;A);Y; A) 2ty

and : Q(pu 1;8u 1:tu 1) since (freso;fresgouns); Mokey(v;a); Y:A) 2 (resp;ty 1) or (fn;
fresgpun(s): r€So0key(v:a); Y;A) 2 (resp;ty 1), andthen (resp;tu 1) 6 f(fno;fresoQpunso):
MoGkey(Ao:Bo): Ao Bo)g. A contradiction follows becauseu < v.

Since property 3.6 has not been ful lled and fresgyys) is a cyphertext, resp v f resgyps)- If
reso = res then one reaches a contradiction to property3.6 because from the output principle
it follows that €) €] ; = (fno;fresoduun(se): MoGkey(Ao:Bo): Aos Bo). Therefore e, cannot be
an Interm event with the above action.
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Responder output events.
act(ey) = Resp: (A) 1 | : B :out(fn;fresgpups); Mkeyaz): A B)

Where A 2 Peers(G) so A 2 sp, wheren; m and s are names, pul(s) is a public key
associated to the names, | is a session index andB is an index which belongs to the set
ngh(A), and B 2 Peers(G) and soB 2 sp. By property 3.6 and the the de nition of

message surroundings it follows thatresp v (fn; fresgyyys); Mkey(a:z): A;B). SinceA;B 2

Peers(G) and then A;B 2 sy and freshness implies thatresp 6 A and resp 6 B, and
since fn; fresgpun(s); MOkey(a:z) IS @ cyphertext, reso v f n; fresgpuns): Mokey(az)- BY the

freshness propertyresop 6 m. Sincefresgyuys) is a cyphertext and property 3.6 must hold,

we rst say that n = resg. By control precedence there exists an eveng, in the run st.

eu! e
and
act(e,) = Resp: (A) :j :in (freso;fpub(s)Gpunile ) Okey(v:a): YiA)

By the token game, (freso;fpul(s)gounile )Okey(v:a): YiA) 2 ty 1, whereresg 6 ng and so
: Q(py 1;8u 1;tu 1)- A contradiction follows becauseu < v.

Since property 3.6 has not been ful lled and f resgpys) is a cyphertext, resg v f resgyyps). If

reso = res then a contradiction to property 3.6is reached, because from the output principle
it follows that €) ) ; = (fno;fresogoun(sos): MoGkey(ao:B0): Ao Bo). Therefore e, cannot be
an Resp event with the above action.

Spy output events. An assumption of the theorem is that the shared keys and the n& private
key generated by the initiator are not leaked, meaning that br all peersA and B key(A; B ) 6v
to and priv (sg) 6\g. At every stagew in the run key(Ag; Bo); priv (sp) 6vty (Theorems?2, 7).
Since this, there is no possible way for a spy to reacpub(sg), e, is not a spy event. O

3.7 Discussion

Along this chapter we have shown two signi cant contributions relevant to the work on se-
curity. The rst one relates to the generality of SPL. To the authors knowledge, process
calculi for security protocols are intensively used in the aalysis and veri cation of secu-
rity properties like authentication, secrecy, non-malleability and non-repudiation. In speci c,
SPL process calculus was used in the veri cation of middleige authentication examples (see
[CCMO02, CWO01, Cra03] for further information). However, an industrial-size protocol, includ-
ing a high amount of message-exchanges and a great number ofemts involved, was never
modelled. We bear witness of the exibility and generality of SPL reasoning techniques by
using them in a large size protocol.
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The second contribution is related to the modi cation of the MUTE protocol, in order to tackle
attacks, directly from the core of the network. This includes several design decisions that can
be considered intrusive in the main protocol idea, such as té inclusion of a le controller.
However, there are facts that increase the security of the stem instead of diminishing it:
Not publishing the le contents and the association of them, to widely known tuples of public
keys/ keywords allows only the owners of the le to detect therequests for an speci ¢ le. This
approach has other advantages as well, the reduction of the assage length in the protocol
increases the network performance, and multiple sources dhe les can be discovered if the
keys are generated based on a seed that uses integrity cheaiseach le (ie. a hash function).

3.8 Summary

Along this chapter we consider our e orts to analyze the secuty properties of the MUTE
protocol. To formally model the MUTE protocol for the rstti me, we have abstracted security
aspects directly from the source code, considering only tree concerned to security, such as
key management and ciphering of public channels to model lik encryptions. This abstraction
does not consider every phase involved in the protocol, butitends to compile the most crucial
interactions where leakage of information is critical.

With the formal speci cation of the protocol, we have used SH. operational semantics and its
general proof principles to state the secrecy property by diiding it into three speci ¢ phases:
The distribution of shared keys, the communication of the request and the nal response. The
basic idea underlying these proof techniques was to state Ipothetical events not full lling
the stated properties, and by means of the operational semaits show that those events can
never be reached generating a contradiction.

Although MUTE was only intended to ensure secrecy for outsiér agents, we went further
and include two basic modi cations of the protocol in order to full ll the secrecy property
in environments where agents inside the network can becomentrustful. This basic changes
includes the creation of a new entity that maintains the information of the les without
publishing their contents deliberately, and a completely improved protocol that adds a middle
phase, enabling a secure search using encrypted messagethweys associated to les, instead
of the usual le contents. This modi ed protocol was also veri ed in the same way as it was
done with the authentic MUTE protocol.
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4 Exploring Integrity and Secrecy Issues over a P2P
collaborative System

Collaborative P2P applications aim to allow application-level collaboration between users.
The inherently ad-hoc nature of P2P technology makes it a god t for user-level collaborative
applications. These applications range from instant messging and chat, to on-line games,
to shared applications [Ese02 BS04, GK03, BMWZ05, Rip01] that can be used in business,
educational, and home environments. Unfortunately, a numter of technical challenges remain
to be solved before pure P2P collaborative implementationdbecome viable, such as location
discovery, fault tolerance, network constraints and secuity [ MKL * 02]. Concerning to the
security of the system, P2P systems are used to share privateformation between peers over
open networks, involving properties like secrecy, anonynty and non-traceability which have
been studied in the literature in order to overcome such risk [MKL * 02].

In chapter 3 we showed how SPL can be a suitable framework for the analysisf security
aspects of P2P protocols. In this chapter we explore how canF. reasoning techniques can
serve as well for the analysis of a collaborative P2P systemWe use a cutting-edge system
as a valid case of study to achieve this a rmation. This system is intended to resolve the
problem of automatic recon guration of applications in a fully distributed system without
compromising the identities of the agents involved in the piotocol, neither their own secrets.

We follow a two-fold approach for tackling the problem of dynamic recon guration of appli-
cations in P2P systems. Firstly, we extend the basic syntadt structure of SPL with some
notions of concurrency relevant to security to formalize anSPL model for the Friends Trou-
bleshooting Network (FTN) protocol [ HWBO05]. Secondly, we propose a new protocol that
maintains the main functionality of the FTN protocol, in a mo del much concise and less com-
plex than the proposed by Wang et al. In order to do so, we healy use the idea of a layered
encryption protocol [GRS99.

The chapter is structured as follows. In section4.1 we explain the problem of dynamic
recon guration of P2P-based applications, taking the FTN network architecture as base. A
de nition of the essential properties to be ensured in this knd of systems is given in section
4.2. In section 4.3 we extend the basic syntax of SPL by means of a set of encoding® enable
a formal model for the FTN protocol. Then in section 4.4 we give a formalization for a new
and more concise protocol with the same functionality as FTN The DR protocol is veri ed
using the basic proof structure inherent to SPL.
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4.1 Dynamic Recon guration Systems

The problem of dynamic recon guration of systems is inhereth to a wide variety of prob-
lems such power consumption networks[pGORO04], agent networks [PR99], and P2P systems
[WHY * 04]. The problem addresses the inconveniences present wherestributed and highly
dynamic system need to modify the states of each agent withauloss of information. In this
section, we explain in deeper detail this problem based in aspeci ¢ problem of P2P systems:
The recon guration of applications in P2P systems.

4.1.1 FTN protocol

The Friends Troubleshooting Network (FTN) is a protocol that explores the advantages of
P2P approach in automatic recon guration of applications [HWBO05]. Placing in context, the
protocol operates in an open environment where the correct ehavior of each agent depends
on a con guration table, where stored entries are comformeddy a key attribute and a privacy
sensitive record value.

Basically the protocol sends the request of a miscon gured pplication and the suspicious

entries that possibly origin the problem to a group of trusted agents (friends). They contribute

to solve the problem revising its own records in search for sspects according the request and
updating the vector of suspects modifying the probability for each suspect, as well including
their own suspects. The protocol continues in the way that eah friend could request for

aid to his own friends, spreading the process until a xed nunber of agents has collaborated
in the request. Finally, each friend involved in the protocd returns backward the vector of

suspects until the requester is reached, and he only has to pair the suspect entry with more

probability.

There are several security aspects that we have to considerfirst, relating to integrity, we
must ensure that nobody can alter the contents of a given mesgje. Second we must guarantee
that nobody can trace the origin of the request. Third, that nobody can guess which entries
are included or modi ed for some agent, and nally: that only the agents that are trusted
must include information in the request.

4.1.1.1 Agent De nition

An agent in the P2P system can be either asick machine, ahelper or a forwarder. Each one
of these roles is explained next.

Sick Machine The rst step to make a request for the sick machine is to convet the privacy
sensitive information (e.g., login/password information, credit card numbers, and so on) into
widely known constants that preserve the semantics of the m&sage. Then the requester must
send to one of the trusted friends the request including the gctor of suspicious entries mapped
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before, the name of the miscon gured application, a new naméo identify the request, and the
number of hops (network jumps) needed to end the search. Firlly the sick machine awaits for
con rmation of the friend. If a con rmation message is received, the protocol simply waits for
the eventually response of his friend and operates consequity, subtracting from the vector
the value with most probability. Otherwise he chooses anotler friend and repeat the process.

Friend Machine The rst thing that a friend agent does after receiving the request infor-
mation, is to choose whether to help or not to the requester. his is done by sending the
respectively acknowledge to the requester. The next step i® decide what role the friend is
going to take in the protocol: to help modifying and including information into the vector
of suspicious entries, or to forward the request to anotherriend. If he wants to help in the
request, the friend operates over the vector of suspiciousnéries adding its own suspects and
incrementing values into previous entries based on his lo¢aeasoning. The main aspect in
this process is to help the sick machine without revealing i6 own applications. Finally, the
friend veri es if it is the last hop in the protocol, sending t he message forward if there are
remaining hops waiting, or backward if is the last agent in the protocol.

Forwarder The forwarder simply selects one of his own friends and passeaway the request,
expecting their response for a limited time. If it arrives, he sends it backwards, otherwise he
must cancel forward requests and send the trace to the previgs agent in the protocol.

An example of the protocol is illustrated in Figure 4.1, where a sick machineS publishes his
request to his friendsH1 and F; which are intended to participate in the request helping and
forwarding the data. Each agent that helps in the request indudes information to the vector
of suspect entries (as seen in the output messages ldf; H, and H4). If an agent has already
collaborate in a request, it stops the input request (denotel as a dotted line betweenF; and
F4). Also, the protocol ends when a xed number of collaborative agents are involved in the
protocol (in this case, the value is limited by 3) sending theresponse backwards, so other
traces that cannot reach this level will be stuck and the friend agents can never reply to the

sender their values.
bl ARl @

hm[ A;;R 1
hm[ A [ Az, R 2

Figure 4.1: Friends Troubleshooting Network Model
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4.1.1.2 Known Attacks

This version of the protocol evidence two types of attacks with are covered broadly by Wang
et al. at [HWBO05]. The rst of them, called Gossip Attack, shows that a collusion between
two non-immediate agents in the protocol could infer what are the new messages posted for
the agent in the middle, as shown in gure 4.2.

Figure 4.2: Gossip Attack: C could infer the contents added byB

Another attack that could break the secrecy of the messagesnithe protocol is the polling
attack. This attack could make use of the parameter denoting the nurber of remaining hops
needed to discover the secrets added by the last agent for thgrevious agent involved in the
protocol.

4.1.2 Characteristics of Fixed FTN

With this considerations in mind, a new version of FTN was rekeased YWHY * 04]. The main
characteristic of the protocol x includes the concept of shared spaces: each helper that
wants to contribute into the protocol, must create a cluster with his own friends, sharing the
messages of the request and modifying or publishing his owrequest into the cluster.

The procedure for the cluster is explained as follows. Firstthe cluster entrance B receives
the messageM , then it publishes M to its friends in order to establish the cluster. When the
cluster is properly established, B publishesV in the shared space and the agents in order that
his friends could have access to the request. In this way thelaster members could publish the
results of their own consults usingM . Every agent in the system is a trusted friend so we can
say that the information of the cluster is not used for his own purposes, and the number of
messages included by each agent in the cluster depends of @#/n local computation. Finally,
one of the cluster members forward the messages contained the cluster in order to continue
with the protocol. The image 4.3 illustrates the process above.

Another of the corrections included in the revision of FTN was to change the number of
hops: No agent could know where is the last hop in the network.This could be made adding
probability to the protocol changing R to 1 Ni where N is the minimum number of samples
needed, and the stop condition is modi ed so it stops when theprobability P (1 Ni) 0
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Figure 4.3: Cluster Modeling
4.2 Security properties to be Assured

In this model, we must describe the security properties in oder to prove the correctness and
functionality of the protocol:

Integrity:  This property states that contents in a message must persisall over the life

cycle of the message delivery. This means that any kind of imfrmation can be added
to the message, but without altering its old contents. More formally, for every message
responseM  in transit from peer A to B the integrity of this message is ensured if
M v M %such that M °is the message generated just befor®l . In this way we ensure
a monotonic message, which is always part of the next generatl message. Due to the
importance of the answers from the agents involved in the regest, we must ensure that:

{ Every data included by a friend peer into the answer, must renain until reaching
the protocol requester agent.

Secrecy: Also known asAnonymity beyond suspiciorfMKL * 02]. Ensures that the real
information published by an agent can never be known by otherpeers in the network,
di erent from its target. Formalizing, for every message gdang from A to B, the informa-
tion published is never showed as a cleartext, or as cypheri which can be decrypted
by other peers rather than the both mentioned before, duringthe delivery life cycle. In
this way, we must show that:

{ The plain text m created by an initiator agent A can never be derived from other
messages in the protocol.

{ The plain text x created by a friend agentB can never be derived from other
messages in the protocol.
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4.3 A close FTN approach with SPL

As we have explained, this protocol includes several concugncy considerations that involve
security, such as the exclusive choice of roles, cluster hdling, and mutable spaces in the
protocol. These features are not de ned in SPL, basically ré/ing on limitations concerned

to the inherent model of the persistent store. However, thisclass of constructions are widely
provided and used in other process calculi such as [Mil99] or Spi[AG974a]. In this section

we provide a set of encodings to achieve these task, formailig FTN network architecture as

a well grounded example where this concepts remains crucial

4.3.1 Encodings
4.3.1.1 Exclusive Non-deterministic choice

The choice between two excluding processes is not a new ide@his operator was introduced
by Milner [ Mil99], Abadi & Fournet [ AFO1] and Palamidessi & Valencia PV01], and intends
to represent the execution of a process with tasks with the sae possibility of being executed.
This idea di ers from the parallel composition in the way that if one of them is selected, the
other processes remains stuck stopping their evolution ovetime. However, the concept of
parallel composition, new nonces, and message exchange csgrve as well for achieving this
task, for example, given a proces®R with two exclusive choicesP and Q:

A public key f is generated and distributed to P and Q in order to guarantee the
freshness of the choice.

Both processes generate a fresh public key that is sent to a numon process which
selects one key according to the time of arrival, respondingvith a fresh name encrypted
with the public key received.

The process receiving the response will be the one which wixecute, while the other
will remain stuck forever.

Clearly, if a third process R is involved in a sequential composition, it has to wait until one
of the process is completely executed. With the considerabins presented before we present
the formal model of this construction in SPL:

(P + Q)R out new(f; g )f P ul(f )gp un(g) : (outnew(s) f Pub(s)gp unt) - iN FXGpup(s) : P:RK
outnew(t) f P ub(t)gp up(r) 1IN FXPpupgry : Q:R K

in fPUb(Z)gp u(r) : outnew(a) f agp un(z)
4.1)
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4.3.1.2 Indexed Exclusive non-deterministic choice

A non-deterministic choice behavior over a set of proces® can be generalized from the
previous encoding in the following way:

(K+ i2f 1:ngPi):R  outnew(f; g)f P ub(f )gp yp(g) : (Kizf 1:ngoUt new(s) f P ub(s)gp up() 1IN FXGpup(s) 1 PitR) k

in fPUub(Z)gp () - outnew(a) f agpe yp(z)
4.2)

It relies in the same concepts stated in4.3.1.1

If a processR has to be executed strictly after an indexed non determinisic choicek, jof 1.:ngPi
we adopt the same idea as in equatior.1.

4.3.1.3 Indexed sequential composition

SPL presents an indexed parallel composition process by wth represents several indexed
processes working in parallel. Despite being a very importat concept for concurrency, some-
times the need of ensuring that all processes will execute enafter another and not at the
same time arises. For example, taking a subtle modi ed versin of the Readers and Writers
mutual exclusion problem [CHP71]. In our own instance of the problem, every writer executes
his task before the execution of the reader. In this particuar case, the only problem arises
when two or more writers want to modify the shared resource atthe same time. Therefore,
since every writer must execute its job having exclusive aaess to the critical section, we must
ensure some kind of order in the set, in a way that while some amt is writing, the others
just wait for their turn. A simple sequential composition between writing processes is not an
adequate solution, due to the amount of processes that shodlbe written in order to com-
plete the whole composition, so we must make use of the new coept of indexed sequential
composition.

Therefore, we will make some minimal changes to the paralletomposition in such a way that
we can turn it into a sequential compaosition.

Kseqizf 1:ngPi outnew(a) f agkey (py:p1) : (Kizf 1:n 11N FXOkey (P 1:p) * Pi 1 0UtT XOkey (P Py ) -

in fngey(pn 1iPn) - Pn
4.3)

Explanation In this encoding, the key factor are the shared keys betweenhie components
inside the parallel composition. These keys will work as chanels by which the indexed
elements will communicate in a way that each one will triggerthe execution of the other.
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We have an output process outside the parallel composition wich will start the exe-
cution of the indexed processes. This can be easily seen basa for the rst indexed
process to get started, it rst has to receive an acknowledgethrough the channel it
shares with the initial process outside the parallel compasion.

In the same way, after the rst process inside the parallel conposition executes, it will
send an acknowledge via the channel it shares with the folloimg process and this one
will have to wait until receiving it.

The last component works outside the parallel composition. It awaits until receiving
the acknowledge from the last process, to get started.

4.3.1.4 Sequential replication

In the same way as a Replication is an in nite parallel compo#&ion of processes, a sequential
replication is an in nite indexed sequential composition of processes. This kind of process is
needed when a processes must be executed in nitely, one aftéhe other.

lseqP outnew(a) fagkey (py;p;) : Kizf 1:1g IN FXkey (p; 1) 1 Pi 1 OUtF XGkey (pi:Pi.y )
(4.4)

Explanation It relies in the same concepts stated i4.3.1.3

4.3.2 Modeling a Cluster for FTN

SinceSPL has a monotonic store, which means that messages output intthe network persist
forever, it turns to be really di cult to model a cluster by me ans of this language, requiring
an space with mutable capacity. Then, modeling an abstractbn of a mutable space on this
calculus must be done via the encodings stated i.3.1L A mutable cluster in SPL can be
seen as a store with several instances through its life timeTherefore, we model a store in
which each time the messages of the cluster are modi ed, anber instance is created, with a
di erent and new lock which will identify the store, denying the access from intruders. The
keys and locks to the space of messages will be managed by a ttlester initiator, updating
the keys and redirecting the spaces each time the cluster is adi ed, assigning a turn for each
of the principals involved. The cluster is a composition of twvo main processes, Initiator and
Participants.

4.3.2.1 Initiator

This process initiates the cluster by generating its rst instance. Following, it triggers the
execution of the next component participating in the cluster.
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Figure 4.4: Cluster over a persistent network : The store evives by means of linked stores

Initiator (A;B; M) outnew(k) fkgp yp(a) : fun (A; P ub(k); M) :

in f M %p up(k) : outnew(a) fM %gp ypca) :oUt f P riv (a)gkey (a8
(4.5)

Where A represents the cluster initiator which works as the keeper omanager of the cluster,
M the message by which the rst information of the cluster is gaerated and B the next
component participating in the cluster. fun (A;Pub(k); M) will represent the function by
which the agent A generates a messaghl ° by computing the already received messagé/
with its own local information in a single tuple. (see sectim 5.3 for further details). The
tuple M ©generated by this function must include the contents ofM . Finally the messageM °
is output to the space of messages encrypted witt ub(k).

Here A generates the rst key (Priv (a)) and lock (Pub(a)) for the cluster. Then in-
troduces the initial information inside the cluster, generated by means of the function

stated before, and encrypts it with the lock (P ub(a)):

Afterwards, agent A sends the key Priv (a)) to the next participant B, so it can modify
the cluster.

4.3.2.2 Participants

This process models the behavior of the rest of agents partigating in the cluster. It represents
the way in which each peer interacts with the cluster by colldborating or not collaborating

with the cause.
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P articipants (A; P;n) (Kseqwof 1:n 1 (iNTP iV (Z)Okey (apy) “iN TM Gpup(z) -
(Contributor (Py; A;M; Priv (Z)) + Non Contributor (Py; A;Priv (2))) :
Distributor (A;Py))) (infPriv (Z)gkey (ap,) 1IN TM gpypz) :
(Contributor (Pn; A;M; Priv (Z)) + Non Contributor (Pn; A;Priv (2)))

where

Contributor (A;B; M;Priv (Z)) out new(Kk) fkgp ypa) : fun (Pub(k); A;M ) :infM ngub(k) :
out new(b) f M %gp () :out f P riv (b); Priv (Z)gkey (a:a)

Non Contributor (A;B;Priv (Z)) outfPriv(Z);Priv(Z)gkey&:a)

Distributor (A;Pm) in fPriv (X);Priv(Y)Okey (apm) -

outfPriv (X)Okey (AP ma1 )

Figure 4.5: Cluster Formalization

Where A is the cluster manager,P the rest of friends participating in the cluster and n the
cardinality of P.

The rst agent receives key (Priv (Z)) and opens the store for the information inside it.

If this peer does not want to modify any content inside the cluster, it just executes
Non Contributor and sends back the same key to the server which will pass it tohe
next process. But, if the agent wants to modify the contents d the cluster it executes
the Contributor process, by which it generates a new keyRriv (b)) and lock (P ub(b))
and calls the function fun (P; Pub(k); M) by which M %is generated. The agent receives
M % encrypted with Pub(k), decrypts it and locks it with its previously generated lock,
(Pub(h)): Then, it sends the key P riv (b)) to the server which will continue, and forward
that new key to the next participant in the cluster by means of the Distributor process.

Putting all together, the cluster can be formalized as:
Cluster (S;P;n;init ) Initiator (S; Py;init ) : Participants (S;P;n) (4.6)

4.3.3 Assumptions

In order to model the FTN protocol among these encodings, we &ve to include some assump-
tions for the reader's understanding. We focus on the modetig of anonymous communications
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in a well established network, so we consider a model where thentication between peers was
previously done using an authentication protocol. Let Peers(G) represent the whole P2P
network as in 3.2, and f (S) the set of friends of any agentS.

De nition 19  (FTN Messages) Let | (Rid;init ) an initial message, whereRid is a
message identi er andinit a tuple which will include all the information required for t he
initiator to request some help. The initial messagel evolves through the protocol in the
following way | ! 1%: 1 L, wherel® (Rid; (init;M )) and M is the new information
added by each friend in the protocol, which decides to help tk requester. An nally L
(Rid; (init; M ); end) represents the last message sent back to the initiator vialle same path
where it arrived. In this last message the nameend, known by every peer in the network,
is included to identify this speci c message as the one whicthas to be sent backwards until
reaching the requester process.

4.3.4 Requester behavior

The requester or initiator A generates a message with the following structure:

fRid; init gkey(a:x )y Where X 2 f (A)

In this way the requester sends the message of all of its fries, which will decide if the will
help it or will just forward its request.

Request Output: out new(Rid;init ) f Rid;init gkey a:x )y Where X 2 f (A). The output
request will be sent to every friend of the requester, encryged with shared key between
friends, in such a way that the only one which can understand he message are the group
of friends of the initiator.

Reception of the answer:in fRid; (init; M );endgkey (v:a). The requester receives as an
answer the rst message received by one of its friends includg the name end, which
will mean that the data recollection have ended, and the mesage now includes the
information required for the solution of its problem.

This behavior is condensed in gure4.6. (Recalling the message structure presented in de -
nition 19)
Init (A) = (ks (A) out new(Rid;init ) fl gKey(A;i)) :inngKey(A;i)

Figure 4.6: Model of a Requester
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4.3.5 Helper Agent Behavior

The rst action that a friend has to resolve is to help or to for ward. If the agent decide to help,
it generates a cluster with a group of trusted friends in sucha way that inside this store, a
great amount of information can be recollected. Then, the her selects one of the principals
involved in the cluster and pass the control over the informdion received in the cluster, one
of the friends sharing the cluster, takes out the last information remaining. This agent has
two similar options to take, either it may forward this infor mation to another friend which

will decide to help or not, or it can just send back the recolleted data to the originator of

the cluster, in a way that it eventually the protocol initiat or can be reached.

Decision: The agent which takes out the information from the cluster, has to decide
between continue helping (by forwarding the data took out from the cluster), or just
sending back the information to the cluster initiator, whic h will redirect it until it reaches
the protocol initiator. This is done in a non-deterministic way by means of the choice
encoding: HelperFwd(A) + HelperBckwd(A).

Reception of the request: infRid; M gkey (v:a) Here the helper receives the message
capturing the information needed to proceed, with its help n the variable M .

Cluster Help: Cluster (S;f (A);n; (Rid; M )). Here the helper generates a cluster by
which it will recollect information to help the initiator of the process. The helper
always acts as managefS which will be in charge of the cluster.

Taking out the information from the Cluster: As we have seen in theCluster encoding
(section 4.3.2), the number n agent in this collaborating process is the last participant
and so, the one with the last private key Priv (x). Therefore, it is the one receiving the
information encrypted with that key in f(Rid; (init; M ))gp un(x)

Continue helping: In the processHelperFwd(A) a chosen helper takes out the informa-
tion from the cluster (f (A), the n friend of A which participates in the cluster process)
and decides to forward the message to other friends, waitinfor a response which it will
send back to the cluster initiator.

Sending Back: In processHelperBckwd(A) the chosen helper { (A)n) takes out the
data from the cluster and sends back the information to the clster initiator which
redirects it back.

With this considerations, the helper is modelled in gure 4.7

4.3.6 Forwarder Role

Forwards the request and waits for the response in order to reirn it to the sender. The
model of this agent is shown in Figure4.8 (We recall the message structure presented
in de nition 19)
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HeIperFWd(A) = ( ki2f (f (A)n) outfl OgK.ey(f (A)n;i)) tin ngKey(f (A)nii) .
OutfL Gkey (t (a)n:a) - 1N TLOkey (f (A)n:a) T OULT L Okey (A

HelperBckwd(A)

outfLgkey (f (a)n;A) 1IN fLOKey (f (A)n;A) 1OULF L Okey (ArY )

Helper(A)
Where
Collaborate(A)

Collaborate(A): (HelperFwd(A) + HelperBckwd(A))

ky 2¢ (x) in fI Qkey (v:a) : Cluster (A;f (A);n; 19 :in f1%p )

Figure 4.7: Model of a Helper

Fwd(A) = 1(in f1%key(v:a) 2 (Kizf (a) OUL Tl Bkey (ai)) 1IN FLGKey (ia) 10Ut T LOkey (Ary )

Figure 4.8: Model of a Forwarder

4.3.7 The FTN Protocol

Putting all together, the instance of the protocol is modelled below:

Node(A) Init (A) kKFwd(A) kHelper(A)

FTN

kAZ Peers(G) N Ode(A)

Figure 4.9: Instance of FTN Protocol

Here we have theF TN protocol, where the initiator is the sick machine which wants to be
helped. It sends a collaboration message to all its friendsyhich will either help it, or forward
the request in their own behalf, to one of their friends. If the friend of the initiator or just
a subsequent friend wants to help, it will call all its own friends and will organize a cluster.
There, all participants will make a brainstorm and will recollect information which can be
sent back to the initiator through the same path, or could be moved forward in a search for
more information.

4.4 Dynamic Recon guration Protocol: an FTN simpli ed prot  ocol

In this model, we pretend to conserve the functionality of the system and the main security
properties with a model strictly close to SPL, with a much more simpler protocol. The
Dynamic Recon guration protocol (DR), modi es the way each agent interacts with ideas
inspired in multiple encryption stages, as in the Onion routing protocol [GRS99. In this way,
we abstract certain aspects of the protocol, like the use of manonymity function in order to
ful Il the requirements imposed. We will represent a P2P network using the de nition 15.

The intuitive description of the protocol is presented belaw:
In this scheme, the initiator agent A creates a request, with a new identi er Rid, a new
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Al X fR;PuUb(K);fM gpupk)Okey(ax ) Where X 2 f (A)
X 1Y fR;Pub(k); ff M dpunky: P Opubk)Gkey(x:y ) WhereY 2 f (X)

fR; Pub(k); fM % P gp up(k)Okey(v:8) WhereB 2 f (Y)
fN; R; Pub(k); M Yyeys:x WhereX 2 f(B)
fN; R; Pub(k); M Yyey(x:y ) WhereY 2 f (X)

<X W

Y ! A: fN;R;Pub(k);M Yyey(v:a) Where A 2 f(Y)

Figure 4.10: Dolev-Yao Model of the DR protocol

public key P ub(k) and a new secretf M gp k). It sends the request encrypted with a shared
key Key(A;P1) to a friend agent P1. In this way, P; receives the information sent by A
and includes into the request his own information, cipherirg it with the public key sent in
the request. This process is made for each agent present in ¢hprotocol, constructing a
ciphered-layer message, only possible to discover for thevmer of the key (A in this case).
This process continue until the last helper agent in the probcol includes its own information
in the request, sending back the response message using ttarge path where he had received
the request, ciphering the message with keyP ub(k). Finally, A receives the message and
recurrently decrypts the message until it reaches his own geererated identi er nonce, verifying
the integrity of the information if the secret is inside the response.

4.4.1 DR Formalization

De nition 20  (Layered Messages) Every message in the DR protocol has a shape: 2
ff MApunky; ff MOpubk); PP ub(k); Fif MAp un(k) ; PIP ub(k); PIPubk): :::g Where m is the variable
in which the nonce identi er generated by the request shouldgo, P ub(k) is the public key
generated by the initiator of the protocol and p is the variable in which the information
included by each helper should remain.

De nition 21  (Submessages under any level of encryptions)L.et hxi be a message where

X . Where x is a relation de ned in the following way: X ifxv 9 gst
oV " 06 "X 0

De nition 22  (Encryption Seed). Let hxi[x=m] a message wherg& appears under any level

of encryptions but just substituting the m variable inherent to the message shape.

De nition 23  (FTN Sets). Let Info represents the data owned by all peers in the network,
Info (X)) the information belonging speci cally to peer X, f (X) represents the set of friends
of peer X, and P eers(G) the set of all peers in the network. In our model we assume thia
Key(X;Y )= Key(Y;X)

The protocol consists of an interaction between two kind of pocessesAlice (X ) and Bob(X).
Alice(X) is declared as an initiator agent that rst creates the request identi er Rid, and
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n (0)

Alice (X ) (ki2f (x) outnew (Rid;k;m)  Rid; Pub(k); f mgp ) »
A o Key (X;i)
tin n;Rid; Pub(k);  hfmgp Key (iX )
Boh(X) (ky 21 (x) I TresQyey (v x) - (FW(X;Y;res) k Triumph (X; Y;res)))
Node(X ) Alice (X)) k Bob(X)
DR k X 2Peers(G) N ode(x)
Where
n o
Fwd(X;Y;res) (Kj 21 (x) out  Rid; P ub(k); fmgpub(k)ip )

PUb Key (xi )
Hin fn;resgeey x ) -out fniresgyey (x.vy

Triumph (X;Y;res) outnew (n) n;Rid; pub(k);f + P 9p ub(k) Key (CY )
ey (X;

And

res (Rid; Pub(k); )

Figure 4.11: SPL model of DR protocol

a new pair of namesk; m, then sends the request message to his friends including thieesh
name m encrypted with Pub(k) among with Rid. Finally, the agent expects for a reception
message with the responsep encrypted in a multilayer system, with all the layers ciphered
using the public key of k, including the encrypted fresh namem sent previously and a new
name n which identi es the message as an answer.

Bob(X ) denotes a friend agent that receives the request informatin and operates forwarding
the response message with his own suspects to one of its fris) ciphering the tuple that
contains the contents received previously and the new mesga in a new encryption layer with
the public key of k. It also can send the multi-layered encryption response imradiately to the
initiator, among with a new name n which denotes that the message shall go back through
the same path it came in. The concrete model of the DR protocokan be seen in gure4.11

4.4.2 Events
4.4.2.1 Alice Events

Alice events represent the actions available for a general requis in the friends network.
Alice is composed by two subprocesses : An output process (.g 4.12(a)), where Alice
sends a messagéRid; pub(k); f mgpunk) Gkey(x;i) requesting for help to any of her friends in
f (x), generating new namesRid; k;m. The second action available for Alice is the recep-
tion of an answer contained in the messagéRid; pub(k); hfmguunk)igkey(i:x ) Via an action

in fRid; pub(k); hfmggyp)iGkey(ix ) (9. 4.12(b)).

85



Alice(X) :j :i: outnew(Rid; k; m)f Rid; pul(k); f mguun(k) ey (x:i)

out new(Rid; k; m)f Rid; pub(k); f mgpupg) Gkey(x:i )

Q//@©

Alice(X ) : in fRid; pub(k); BMpuseigkeyix ) (f n; f pU(S) Gpunite ) Gkey(a ); A B)

(a) Alice Output
Alice(X) 1 j : in fRid; pub(k); PMpu) i key(ix )

%f Rid; pub(k);  PMpun) i key(ix )
|

in f Rid; pub(k);  MMpun) i key(ix )
(b) Alice Input

Figure 4.12: Alice Events

4.4.2.2 Bob Events

An execution of the agentBob can be branched in a number of sub-processes: the initial ente
done is the reception of a request messadeRid; pub(k); gkey(y:x) from any of the friends in
f (A) via an input action in fRid; pub(k); deey(v:x)- At this point, Bob can evolve in one of
the sub-process of forwarding or response transmission.

Bob(X) :jO:j : in fRid; pub(K); Okey(v:x)

@ f Rld. pUb(k). gkey(Y;X)

l——Tl in fRid; pub(K);  Gkey(v:x)

BOb(X) j°: outnew(n) f n; Rid; pub(k); f ; P Gpun Geey(x:v )

BOMX) jo:j : outfRid; pub(k); ff Mo ; Ppubii) Irey(x; )

Figure 4.13: Bob Initial Event
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4.4.2.3 Forwarder Events

Forwarder events indicate those events in which Bob helps adributing with the request and
sending the modi ed message to a friend for further assistace. It is basically composed by
three sub-processes: The rst process (g.4.14(a)) generates an output event with the mes-
sage f Rid; pub(k); ff Mpun(k); POpub(k) Gkey (x ) Via an output action outf Rid; pub(k); ff mguus(k);
POpub (k) Jkey (x;j )- The next action available for the forwarder generates an iput event for the
answer messagebn; Rid; pub(k); gkey(j:x ), Sent back towards the originator agentAlice (g.
4.14(b)). Finally, the last action (g. 4.14(c)) generates an output event with the message
fn;Rid; pub(k); gkey(x;y y Dy means of the output action out f n; Rid; pub(k); Gkey(x:y )-

o . Bob(X ) :j°: in fn; Rid; pub(K); Okey(jx )
Boh(X) :j°:] : outfRid; pub(k); ff MGauok): Ppuiio Gkey(xi ) o0

fn; Rid; pub(K);  Okey(jx )

outf Rid; pul(k); ff mQounk); Ppubi) Gkey(xi )

[ Jinfn;Rid; pub(k); Geey(x )

Q @ fRid; pub(k); ff mgous(ky s PYpubi) Gkey(x; ) Q

Bob(X) :j°: in fn;Rid; pub(k); Gey(ix ) Bol(X) : j°: outfn;Rid; pub(k); Gkeyoxv)
(a) Output for help (b) Input with Response
Bob(X) : j°: outfn;Rid; pub(k); Okeyx:y )

? outfn; Rid; pub(k);  Geey(xv )

fn; Rid; pub(k);  Geeyx:v )
(c) Output with Response

Figure 4.14: Forwarder Events

4.4.2.4 Triumph Event
Bob Triumph event indicates the event in which the help ends, gererating a messagé ; p gpup(k) Gkey(x:v )

with a new name n, with the action outnew(n) fn; Rid; pub(k);f ;P Gpub(k)Gkey (x:v ), &S can be
seen in gure 4.15

87



Bol(X) : j°: outnew(n) f n; Rid; pub(k); f ; P Gpus(k) Gkey(x:v )

outnew(n) f n; Rid; pub(k); f ; P Gpun(k) Gkey(x:y )

fn; Rid; pul(k); f ;P Goun(k) Gkey(x:v )

Figure 4.15: Triumph Event

4.4.3 De nition of the Spy

We use the de nition of a powerful spy used in SPL (section3.5.1) to model the ways of
intrusion and attack that an agent can do.

DR DR k!Spy

4.4.4 Secrecy Proofs in DR

To ensure the secrecy property for the response messages lretFTN protocol, we must follow
a set of general steps.

Initially, we must verify that the private keys used for encrypting the information added by
each helper, are never leaked during message transmission¥his fact is relevant in order
to assure that the data added by a friend who wants to help the &k machine, could be
understood only by the initiator peer.

Then, assuming that those keys are never leaked, this secneqroperty can be proved in
a straightforward way, by presenting a stronger property which states that every response
message added by a friend, is encrypted with a private key oglknown by the initiator of the
protocol, and since we know that messages encrypted with thee keys can never be decrypted
by other rather than the peer requesting for help, the secreg property for responses is ful lled.
In order to verify this property, each output event occurring in the protocol must be veri ed,
to ensure that there is no message responses from friends émded for the initiator, which
appear in non ciphered messages.

4.4.4.1 Secrecy Property for Private Key generated by thiéator

The rst theorem for the DR protocol regards the private key generated by the initiator. If
this private key is not corrupted from the start, and the nodes in the network behave as the
protocol states, then this key will not be leaked during a prdocol run. If we assume that
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Priv (k) 6Mp where k is a name generated by the initiator, then at the initial state of the
run there is no danger of corruption. This theorem will help us to prove some other security
properties within the protocol.

Theorem 10. Given a run of the DR and kg is a name generated by the requester, P riv (ko)
6\ then at each stagew in the run, Priv (kg) 6\

Proof. Suppose there is a run oDR in which priv (ko) appears on a message sent over the
network. This means, sincePriv (kp) 6\, there is a stagew > 0 in the run st

Priv (ko) 6@y 1 and Priv (ko) v tw
The event g, is an event in the set
Ev(DR)  Alice : Ev(paice) [ Bob: Ev(pgob) [ Spy : EV(pspy)

and by the token game of nets with persistent conditions, is &

Priv (ko) v €5
As can easily be checked, the shape of eveAdice or Bob.

e 2 Alice : EV(paiice) [ Bob: EV(Pgob)

IS st

Priv (ko) 6\&°
The event e, can therefore only be a Spy event, ifey, 2 Spy : Ev(pspy), however by control

precedence and the token game , we would nd an early stage in the run, u <w st priv (ko)
v t, and therefore a contradiction is reached. O

4.4.4.2 Secrecy Property for the response help intendedterRequester

This theorem concerns the secrecy property for all response intended for the requester. It
states that all the responses which ow through the network will never be visible for other
peers di erent from the requester.

Theorem 11. Given arun of DR st Xg 2 Peers(G), po 2 Info, Priv (ko) 6¥¢ and the run
contains aBob event b; labeled with action

act(by) = B : (Xo) :ig ] : outfRido;Pub(ko);f ;P 0Opub(ke)Tkey (x;j )
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Where ig is a session indexj is an index which belongs to the setf (X), Ridg and ko are
names andP ub(kg) is a public key associated to the namekg, and pg 2 Info . Then at every
stagew pp 6\yy.

Proof. We show a stronger property such as this

Qp;s;t) ,  (post)
ff no; Rido; Pub(ko); Mpoigkey (x:v ); ff Rido; Pub(ko); hpoigkey (x:v )9

If we can show that at every stagew of the run Q(pw;sSw;tw) then clearly py 62t,, for all
stagesw in the run. Suppose the opposite statement, that at some stag in the run, property
Q does not hold, by freshness clearlyQ(DR; so;tg). Let v by well foundedness be the rst
stage in the run st: Q(py; sv;ty). From the freshness principle it follows

az! ey

and from the token game of netsfRido; Pub(ko);f ;P 0Gpub(ke)Ikey(x;j) 2 (Posty 1) (Be-
cause messages are persistent in the net). The eveg} is an event in

Ev(DR) Alice : EV(Paiice) [ Bob : EV(Pgop) [ Spy : EV(Pspy)

and from the token game of nets with persistent conditions isst

(po;€y € 1) 6 ff ng;Rido; Pub(ko); Mpoigkey (x:v ): ff Rido; Pub(ko); Mpoigkey (x:v )9
4.7)

Clearly e, can only be an output event sinceed €9 ; = ; for all input events e. Examining
the output events of Ev(DR) we conclude that e, 62Ev(DR) reaching a contradiction.

In the following lines we will explore each output event in the protocol in order to verify that
the event g, is di erent to all of them.

Alice output events.

act(ey) = Alice : (X) :j :i : outnew (Rid; k; m)fRid; P ub(k); f mgp unk) Gkey (x:i )

Where X 2 Peers(G) and soX 2 sp, whereRid; m and k are names,P ub(k) is a public key

associated to the namek, j is a session index and is an index which belongs to the seff (X))

wherei 2 Peerg(G) and soi 2 sg. Property 4.7 and the de nition of message surroundings
imply that po f Rid;Pub(k);fmgdppi)Okey (xi)- From the freshness propertyp, 6 Rid,

po & Pub(k) and po & m. Therefore e, can not be anA event with the above action.
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Bob output events.

CaseFwd First output event

act(e,) = Bob: (X) : j%:j : outfRid;Pub(k);f ;P Gpub(k)Ikey (x; )

Where X 2 Peers(G) and soX 2 sp, whereRid; m and k are names,P ub(k) is a public key
associated to the namek, p 2 info, j%is a session index ang is an index which belongs to
the setf (X) wherej 2 Peers(G) and soj 2 sp. Property 4.7 and the de nition of message
surroundings imply that po f Rid;Pub(k);f ;p gpubk)Ikey (x;j)- If Po = por hpoi then
we reach a contradiction to property 4.7 because from the output principle it follows that
ey e 1 = fRidg;Pub(ko); hpoigkey(x;)- Then since property 4.7 must hold, pp = Rid or
po = Pub(k). By control precedence there exists an eveng, in the run st.

e! ey
And
act(e,) = Bob: (X) :j%: infRid; Pub(k); OKey (Y:X)

By the token game
f Rid; P ub(k); Okey (Y:x) 2 tu 1

and: Q(py 1;Su 1;tu 1) sincefpo; Pub(k); Okey(v:x) 2 (Postu 1)or fRid; po; Okey(v:x) 2
(Po;tu 1)andthen (po;ty 1) 6 ff no;Rido; Pub(ko); hpoigkey (x;v ); fRido; Pub(ko); hpoiQkey (x:v )9,
a contradiction follows becauseu < v.

CaseFwd Second output event

act(ey) = Bob: (X) : j%: outfn;Rid;Pub(k); Okey(x:y )

Where X 2 Peers(G) and soX 2 sp, wheren;Rid; m and k are names,P ub(k) is a public
key associated to the namek and j°is a session index. Property4.7 and the de nition of

message surroundings imply thatpo f n;Rid; Pub(k); Okey(x:v ). If hpoi then we reach a
contradiction to property 4.7 because from the output principle it follows that € €9 ; =

fno; Rido; Pub(ko); hpoigkey (x;y ). Property 4.7 must hold then, pp = n or pp = Rid or
mo = Pub(k). By control precedence there exists an eveng, in the run st.

eu! SV
and
act(ey) = Bob: (X) : j%: infn;Rid; Pub(k); Okey(ix )

By the token game
fn;Rid; Pub(k);  Okey(ix) 2 tu 1
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and: Q(puy 1;Su 1;tu 1) sincefpo; Rid; Pub(k); Okey(x) 2 (Poitu 1)orfn;po; Pub(k); dkey(jx )
2 (poity 1)orfn;Rid;po; Okey(x) 2 (Poitu 1)andthen (po;ty 1) 6 ff no; Rido; Pub(ko);
MPoigkey (x;v ): fRido; Pub(ko); Mooigkey (x:v )9, @ contradiction follows becauseu < v.

CaseT riumph output event

act(e,) = Bob: (X) : j%: outnew(n)fn;Rid; Pub(k);f ; p Opun(k) Okey (x:v )

Where X 2 Peers(G) and soX 2 sp, wheren; Rid; m andk are names,P ub(k) is a public key
associated to the namek, p 2 info and jCis a session index. Property4.7 and the de nition
of message surroundings imply thatpy f n;Rid; Pub(k);f ;p gpubk)Ikey (x;v )- From the
freshness principlepp 6 n. If p= poor hppi we reach a contradiction to property 4.7 because
from the output principle it follows that € &) ; = fng; Rido; Pub(ko); Mooigkey (x.y )- Then
since property 4.7 must hold, pg = n or pp = Rid or pg = Pub(k). By control precedence
there exists an evente, in the run st

ey! ey
and
act(ey) = Bob: (X) : j%:infn;Rid;Pub(k); GOkey(v:x)

By the token game
fn;Rid; Pub(k); Okey(vix) 2 tu 1

and: Q(pu 1;Su 1;tu 1) sincefpo; Rid; Pub(k); Okey(v;x) 2 (Poitu 1) or fn;po; Pub(k); Okey(v:x)
2 (po;ty 1)orfmRid;po; Okey(v:x) 2 (Poitu 1)andthen (po;ty 1) 6 ff no;Rido; P ul(ko);
MPoigkey (x;v ): T Rido; Pub(ko); Mooigkey (x:v )0, @ contradiction follows becauseu < v.

Spy output events An assumption of the theorem is that the private key of the requester is
not leaked, meaning that Priv (k) 6vtg. At every stage w in the run Priv (k) 6vt,,. Since this
there is no possible way for a spy to reaclpg, e, is not a spy event. O

4.4.5 Integrity Proofs in DR

The requester guarantees the integrity of the message it wlilreceive, by adding in the rst
layer, a fresh namem, encrypted with a new public key P ub(s). This value should be kept
inside the message in order to be recognized. Since the name is included in the message
in the same way asp, and we have already proved the secrecy property for the respse
information p in section 4.4.4.2 we can state thatm is kept as a secret along the protocol. In
this case, we can ensure that nobody di erent from the requeter has access tan. Since every
helper must add some information to the message, and the onlyay to keep the m value
is maintaining the already received contents, the helper mat add its new data and cover
the whole message with a new encryption layer generated withP ub(s). Then, if it can be
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guaranteed that the namem persists in the message, and this nonce is never leaked (adaty
veri ed), the integrity of the message, is never harmed.

This integrity property is veri ed by presenting a property which states that every message
intended for the requester has the same structure which indiates that the noncem is always
present, and as we said, ifm is kept as a secret, the integrity of the message is ensuredn|
order to verify this property, each output event occurring in the protocol must be veri ed, to
ensure that there is no message intended for the requester,hich appear without nonce m.

4.4.6 Integrity Property for the messages intended for the R equester

This theorem states that the same fresh namem will always appear in the same message
identi ed with a request id Rid. This property among with the secrecy property for value m
will ensure the integrity of the message.

Theorem 12. Given a run of DR, X 2 Peers(G), Priv (kg) 6\, and the run contains an
Alice event a; labelled with action

act(a;) = Alice : (Xo) @ ip : 1 : outfRido; Pub(ko); fMode ub(ke) Ikey (x:i)
Where i is a session index, is an index which belongs to the setf (X ), Ridg; mg and kg

are names andP ub(kp) is a public key associated to the namekg, then at every stagew the
integrity of the message will be maintained.

Proof. We show the formalized proof in the following property:

Q(p;s;ittmg) , 8 M 2 (Rido;t):M v f ng;Rido; Pub(ko); hmoi [Mmo=m]gkey (x:v )
If we can show that at every stagew of the run Q(pw; Sw; tw; mo) then clearly the integrity of
the message is maintained along all stages in the run. Suppose the contrary, suppose that at
some stage in the run, propertyQ does not hold, by freshness clearlQ(DR; sg;to; mg). Let

v by well foundedness be the rst stage in the run st: Q(py;sv;ty; Mg). From the freshness
principle it follows

az! ey

and from the token game of netsf Rido; P ul(ko); f MoQp un(ke) Gkey (x;iy 2 (Rido;ty 1) (Be-
cause messages are persistent in the net). The eveg} is an event in

Ev(DR) Alice : EV(Paiice) [ Bob : EV(Pgop) [ Spy : EV(Pspy)
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and from the token game of nets with persistent conditions isst

(Rido; €] €] 1) 6v fng; Rido; Pub(ko); hmoi [Mmo=m]gkey (x;v )8 Mi 2 (Rido;€] € 1);mo m,
(4.8)

Clearly e, can only be an output event sincee €9 ; = ; for all input events e. Examining
the output events of Ev(DR), we conclude that e, 62Ev(DR) reaching a contradiction.

Since we are analyzing the integrity of messages intended rfdhe requester, we will take a
look at speci ¢ output processes where a particular messagieenti ed by a Request id Ridg
occurs. (WhereRid = Ridg). We explore these events in order to verify that the evente, is
di erent to all of them.

Alice output events.
act(ey) = Alice : (X) :j :i : outnew (Rid;k;m)f Rid; P ub(k); f mgp unk) Ikey (x:i )

Where X 2 Peerg(G) and so X 2 sp, where Rid; m and k are names,P ub(k) is a public
key associated to the namek, j is a session index and is an index which belongs to the
set f (X) wherei 2 Peers(G) and soi 2 sg. Property 4.8 and the de nition of message
surroundings imply that mg f Rid; Pub(k);fmgp un)Gkey (x;i)- Since Rid = Rido then

mo 6 Rid. And from the freshness propertymgo 6 Pub(k). Then, if mg = m then we reach
a contradiction to property 4.8 because from the output principle it follows that €7 €9 ; =

fRido; Pulb(ko); hmoi[mo=m]gkey (x:i)- Therefore e, can not be anA event with the above
action.

Bob output events.

CaseFwd First output event

act(e,) = Bob: (X) :j%:j : outfRid;Pub(k);f ;p 9p ub(k) IKey (X;j )

Where X 2 Peers(G) and soX 2 sg, whereRid; m and k are names,P ub(k) is a public key
associated to the namek, p 2 info, j%is a session index ang is an index which belongs to
the setf (X) wherej 2 Peers(G) and soj 2 sp.Property 4.8 and the de nition of message
surroundings imply that mo f Rid; Pub(k);f ;p gpunk)Ikey (x;j)- Rid = Rido then mq 6

Rid. Sincep 2 Info and sop 2 sp from the freshness principle it follows that mg 6 p. If

Mo = m then we reach a contradiction to property 4.8 because from the output principle
it follows that € &) ; = fRidg;Pub(ko); hmoi[mo=m]gkey (x;)- Then since property 4.8
must hold, mg = Pub(k). By control precedence there exists an eveng, in the run st.

eu! ey
and
act(ey) = Bob: (X) : j%:infRid;mo; Gkey(v:ix)
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By the token game
fRid;mo; Okey(v:ix) 2 tu 1
whereng 6 Pub(ko) and so: Q(py 1;Su 1;tu 1) Which is a contradiction becauseu < v.

CaseFwd Second output event
act(e,) = Bob: (X) : j%: outfn;Rid;Pub(k); Gkey(x:v )

Where X 2 Peers(G) and soX 2 sp, wheren; Rid; m andk are names,P ub(k) is a public key
associated to the namek and j %is a session index. Property4.8 and the de nition of message
surroundings imply that mg f n;Rid; Pub(k); Okey(x;y)- Rid = Rido then mo 6 Rid.
Sincep 2 Info and sop 2 sy from the freshness principle it follows thatmg 6 p. If mg = m
then we reach a contradiction to property 4.8 because from the output principle it follows
that ) &) ; = fno;Ridg; Pub(ko); hmoi[me=m]gkey (x.v ). Property 4.8 must hold then,
Mo = n or mg = Pub(k). By control precedence there exists an eveng, in the run st.

e,! ey
and
act(ey) = Bob: (X) : j%: infn;Rid; Pub(k); Okey(x )

By the token game
fn;Rid; Pub(k);  Okey(ix) 2 tu 1

and: Q(pu 1;Su 1;tu 1) sincefmo; Rid; Pub(k); Okeyix ) 2 (Mostu 1) or fn;Rid;mo;  Gkey iix )
2 (mo;ty 1) andthen (mo;ty 1) 6V fng; Rido; Pub(ko); [mMo=m]gkey (x;v ), @ contradiction
follows becauseu < v.

CaseT riumph output event

act(e,) = Bob : (X) : j%: outnew(n) fn;Rid; Pub(k);f ;p 9P ub(k) Key (X:Y )

Where X 2 Peers(G) and soX 2 sgp, wheren; Rid; m and k are names,P ub(k) is a public
key associated to the namek, p 2 info and j°is a session index. Property4.8 and the
de nition of message surroundings imply that mg f n;Rid; Pub(k);f ;p gpunk) Ikey (x:v )-

Rid = Ridg then mg 6 Rid. From the freshness principle,mg 6 n. Sincep 2 Info and
sop 2 sg from the freshness principle it follows that mg 6 p. If mg = m then we reach a
contradiction to property 4.8 because from the output principle it follows that € €9 ; =

fno; Rido; Pub(ko); hmoi[Mo=m]gkey (x:v ). Then since property 4.8 must hold, mg = n or
mo = Pub(k). By control precedence there exists an eveng, in the run st

ey! &
and
act(ey) = Bob: (X) : j%:infn;Rid; Pub(k); Gkey(v:x)
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By the token game
fn;Rid; Pub(k); Okey(v:x) 2 tu 1

and: Q(pu 1;Su 1;tu 1) sincef mo; Rid; P ub(k); OKey (Y:X) 2 (mo;ty 1) or fn;Rid;mg; Okey (Y;X)
2 (mo;ty 1) and then (mo;ty 1) 6V fno; Rido; Pub(ko);  hmoi [Mmo=m]gkey (x:v ), @ contra-
diction follows becauseu < v.

Spy output events Since we have proved before that the private keyPriv (k) is never leaked,
we can guarantee that no Spy can ever change the contents of ¢hmessages, them, is not a
Spy event. O

4.5 Discussion

This chapter presents two main ideas we want to extend, the rst relies on the modeling and
speci cation of a new set of constructions closely related @ concurrency models. Although
these are not new ideas and are present in other process calcsuch as MPW89, AG97a,
AF01, Hoa83 Car99], a pure inclusion of these kind of tools in SPL presents seawus di culties
according to the inherent model of persistent networks. Theefore, by using the nominality
of this calculus together with strong encryption mechanisns, this kind of constructions can
be emulated without any intrusive changes to SPL operationd semantics. Hence, providing
a set of encodings allows a clean and straight-forward trariation between a broader subset
of protocols models in di erent concurrency models mentiored before and SPL. However, a
strong relation concerning the expressiveness is necesgdo achieve a complete translation
within them. Previous works establishing strong relations between lambda-calculusChu51]
and the  calculus, and between persistent and non-persistent lanqages are presented by
means of encoding§fW01, GSV04, PSVV04]. Relying on this concepts, an interesting strand
of research could involve an encoding from SPL to the asynclmnous  calculus in such a
way that every calculus -reducible can be translated to SPL in order to use its simplebut
powerful reasoning techniques.

Our second contribution we want to stand out relates to the famalization and proof of new
security properties using a process calculi. In particular we have considered Integrity as
one of the essential properties in order to guarantee the sacty of the system, particularly
in applications where mobility involves extensibility of services, resources or functionality.
Security information technologies have presented di erem approaches to tackle it, involving
every one of the levels in information security, from ACID cantrol mechanisms [EK86], to
security protocols [ZS0J and policies BF03]. However, reasoning techniques provided by
process calculi, in particular SPL, brings the necessary gibility to construct a powerful
framework to prove di erent security properties, a clear advantage from speci c-driven models.
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4.6 Summary

This chapter was specially devoted to exploring SPL languag in other contexts, with a subset
of protocols of P2P systems specially designed to deal wittssues in collaborative computing.
In this way, we use the Friends Troubleshooting Network protocol as a well grounded example
where contribution among peers its critical for the correchess of the protocol, considering a
number of aspects where security comes of the essence.

With this model, we have constructed a set of encodings that how a protocol designer to
construct models with close resemblance to widely known moels such as Spi calculus and
CSP, broadening the elements provided in SPL for a more strgjht-forward design of protocols
closely to implementation stage. This encodings were showmithe compositional model of FTN
protocol using SPL.

The last, but no least important task, was to abstracting the functionality of FTN protocol
and based on concepts of multi-layered encryption systemgropose a new model of dynamic
recon guration protocol, simpler in its behavior, but e ci ent in the number of process involved
between peers. To validate the Dynamic Recon guration protocol, we prove its correctness by
means of the use of SPL reasoning techniques to formally twariportant security properties,
such as secrecy and integrity.
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5 Concluding Remarks

This chapter aims to relate the current research results wih other approaches of informa-
tion security, stating the principal conclusions derived from achieved results, and pointing to
several directions where this research can be extended.

5.1 Related Work

Information Security is a well studied area, in such a way tha a wide variety of formalisms
have been developed to overcome the risks exposed in chapt2r In this section we compare
these formalisms with the ones used along this thesis, rsif comparing other frameworks for
security analysis, and secondly studying previous works irformal models for P2P systems.

Approaches for Security Analysis

State-exploration Models: These techniques are focused in the exhaustive exploration
of every possible interaction of concurrent processes in der to nd at least one state
where the invariant is not ful lled, showing interesting re sults breaking protocols con-
sidered as secure with other techniquesos94 Low96, Low97, MCJ97], with existent
implementations [Low97, MCJ97]. However, the nature of interactions between pro-
cesses leads us to a problem known &he State Explosion Problem Kot03], imposing
limits on the size and complexity of the protocols in terms ofprocesses involved, mak-
ing really hard to express protocols with in nite behavior such as those used in P2P
systems. However, improvements in space-exploration seer algorithms, satisfacibility
models ERP9]] and graph theory seems promising in order to consider onlyeachable
states [QVvRDCO06].

Logic Models : Probably the widest used technique, these models de ne thekowledge of
a system in terms of beliefs of each one of the agents, providj a set of rules to denote the
evolution of the knowledge in the system BAN96]. Each model deals in a di erent way
with the information, ranging from agent-driven models [BAN96, AG97a, AG97b, AG99,
AFO01] to network-driven models [Pau97, Cra03]. The properties are proved by means of
using rules present in the models in order to nd a reduction that violates the invariant
established, using logic programming as a powerful tool cable of representing and
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implementing such type of reasonings with satisfactory reslts [KW96, Mea92, Mea9§.
SPL has a strong resemblance with this approach, basing itsransition semantics on this
models. However, one of the virtues in this models is the alitly to relate two di erent
protocols in order to nd similar behaviors. This is an inter esting strand of research,
which eases the work required to prove the security of some ptocols, only by reducing
to well-known examples proved from the scratch.

Temporal Logic: By combining both temporal and rst order logics, frameworks in which
systems requiring both dynamic and informational aspects elating to knowledge can
be described PGFvdH04, HT96, JWM95]. This is particularly important in security
protocols, where one wants to ensure that certain knowledgés obtained over time or,
at least, the ignorance of potential intruders persists ove the whole run of the protocol.
These logics have advantages of a well-de ned semantics, mgerating a framework more
formal than the previous models studied. However, these ckses of frameworks are
cumbersome, needing long proofs for even simple protocol§WM95], and are rather
complex for a suitable implementation; in previous researa, the complexity of the
model itself with proofs of "secrecy-temporality" are shown to be undecidableHT96].
Relating to SPL model, the event-based approach has been scessfully automated by
implementing a complete framework called Spaces[Mil02] which is closely tied to
SPL semantics, providing an e cient way to model, simulate and implement security
protocols

Constraint-based Models: One of the novels ideas in information security address the
use of constraint programming (CP [MS99)) as a suitable tool to model security proto-
cols and policies. Constraint Solving is an emerging softwa technology for declarative
description and resolution of large problems. In this apprach Bistarelli models the
system as a constraint satisfaction problem where agents arrepresented by variables
bounded with domains that denote the messages present in theetwork. The interaction
between agents are modelled as a set of constraints that actsver the variables, and the
proofs are simply modelled in the resolution of the constrait problem, verifying cases
related to con dentiality of a message BBO01] or security-policies BF03]. One of the
most relevant characteristics of these approach is the usef@ monotonic store of con-
straints where partial information over domain variables is increased bytell operations.
This inference mechanism resembles the monotonic space ofessages present in SPL.
However the models maintain strong di erences between themThe rst of them relates
to proof analysis, meanwhile protocols in the approach of castraint programming are
proved in a fully automated way, proofs in SPL have to be manudly de ned. The second
di erence relates to the properties itself, SPL provides a srong set of proof principles
appropriate for the de nition and veri cation of a wide vari ety of security properties,
meanwhile proofs in CP have to be de ned as a derivation of a poperty related to the
privacy levels of a system.

Formal models for P2P systemsAlthough the use of process calculi for the analysis
of security aspects is a topic well studied in the literature including works in the
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5.2

and Spi calculus W01, Mil99, AG99], CSP process algebragch96¢ RSG" 01] and
ambient calculus [Car99. To our knowledge, little work has been done in security
analysis of P2P protocols using Process Calculi. In particlar, the project Pepito [HS0Z
has started e orts in veri cation of properties using CCS variants in static versions of
P2P protocols BNAGO4], in particular, correctness properties. Other analysis lave
been made for specic P2P functionalities, like quantitative analysis FL04] and trust
reputation models [SLO3 ADO1, GJA03, KSGMO03]. However, to our knowledge, this
is the rst formal attempt using process calculi to model and reason about security
properties in P2P protocols.

Conclusions

. The use of process calculi as tools to model, analyze andrifg communication concur-

rent systems, allows us to formalize any kind of communicatin protocols leaving aside
technical details. Transforming complex distributed algarithms into abstract models
syntactically close to their descriptions in pseudocode. Babling a detailed description
of their behaviors by means of several mechanisms such as éelences representing
actions by which each component in the system evolves. In pécular process calculi
concerned to security, allows us to model security protocd using their inherent crypto-
graphic primitives, as well as to enable veri cation of secuity properties by using their
own di erent operational semantics.

. The use of the SPL calculus let us model several processewolved in popular real life

protocols, such as those involved in P2P systems, without losing dependencies among
them, in order to verify security properties along all their runs. In this way, properties
essential for P2P communications protocols can easily be vieed. We demonstrate this
by modeling an analyzing two protocol examples related to tle most representative P2P
systems, where collaborative processing and sharing of imfmation have become critical
tasks associated to security.

. After deeply analyzing several crucial properties an imjprtant protocol such as MUTE

must ful ll, several failures with respect to security atta cks behind di erent kind of
saboteurs were stated. In this way, taking in count such failires behind a more powerful
attacker, such as the one which can impersonate a trusted usénside the network, we
add a new component to the protocol structure, as well as othepartial modi cations
in the communication model, to prevent an important attack k nown asthe middle man
attack. The inclusion of a le controller and several modi cations t o the MUTE protocol,
give life to the modi ed MUTE protocol presented in 3.6 which can avoid these kind of
attacks inside the network.

. A very important contribution within this work, regards t o the inclusion of several

features present in other di erent protocols, into another protocol which presented some
failures with respect to several attacks, so it could be modiéed and veri ed under the
SPL model, in order to ful Il each property established by it s optimal scheme. This can
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be easily seen in chapted, where we improve the simple FTN protocol, by developing

a new protocol, the Dynamic Recon guration protocol, with t he same functionality

presented in FTN, but with a very important feature, known as a layer encryption, used

in industrial and military protocols [ GRS99, which enables the achievement of a new
property denoted as message integrity.

5. The underpinning theory by which SPL relies on, among withits exible and intuitive
proof techniques, enables not just proving the security prperties already veri ed in other
works, but the exaltation of its generality, since by means & subtle modi cations to the
general proof structure, one can verify di erent important properties never proved. One
of these is the integrity property, veri ed in our new Dynami ¢ Recon guration Protocol
de ned in 4.4.

6. We bear witness of the exibility and generality of SPL reasoning techniques, since
in a relatively simple way, without major relevant changes in the general proof struc-
ture established in SPL, we could prove other kinds of protools never veri ed or even
modelled. Then, by means of case studies in chapter8 and 4 we can conclude that
even though SPL is a very simple security language, it presdas a very high level of
polyvalence with respect to modeling and verifying severatype of protocols.

7. Albeit the SPL protocol language presents an expressiveral powerful semantics, real
world protocols need a broader set of constructions for beig expressed accurately. We
relate a set of these constructions with other process caltiexistent, and according to its
relevance, we use the syntactic set presentin SPL to model endings, supplying protocol
designers a wider set of constructions without intrusive exensions of the calculus. In
particular, we enable a much more clear and precise securitgommunication protocol
model for the xed FTN protocol dened 4.1.2 where a mutability construction is
needed, as well as a set of constructions which could repragenotions such as the
non-deterministic choice and sequential composition.

5.3 Future Work

The following ideas emerges as directions for future work:

5.3.1 Local reasoning in SPL

In chapter 4 we have seen the model of FTN we discuss about the inclusion ¢écal com-
putation for processes. In other process calculi, this is areasy task with the inclusion of
functions. In SPL we can achieved this by using message exchges and private keys in every
execution of a process. In this case, the function will behay as follows: giving a vector of
attribute-value messages, the function will insert new valies for each attribute and generate
new tuples. More formally, the speci cation is presented béow:
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fun (%) ! x°[ w

Where:
x hhag; vl hao; i hag; Wi
x0: htag; i hag; ¥ ;000 s hag ; AQii
w : hidy; g hop; i oo Hog; Hnii

And

kv kk WkA8x 2 %jx 2 4

To correctly model this function, we specify it with three processes, where the basic process
h(w; k) simply takes a single attribute-value tuple and represens the local computing of values
with an insertion of a new vector of nonces to the tuple, sendig it with a previously received
key and a new value that guarantees the freshness of the megga The next processy(x; 1)
splits the message into attribute-value tuples, the local omputation function for each tuple,
checks the integrity of the response, and sends the tuple foiurther use. Finally the process
fun (A;j; %) only generates a key to use in previous processes, sequeliyl receives every
submessage ok and includes the new tuples in the request, sending the restd over a public
key | of the agentA.

De nition 24.  Let S(x%) be the subset of messages of a vectercomposed by attribute-value
tuples wi = (a&;%). Let x;y the composition of messages x and y; and) =y 1. gWi

the creation of a message U composed by every messaggethat belongs to the indexed set
fl:::kg.

In this way, a function that includes a new vector of attribut e-value tuples from a vector
previously determined can be seen as follows:

fun (A;j; %), outnewlflgpub(A) 9 D) :(Kizsee in fw gpub(,)):outnewxofu;xogj
a(x 1), K, 25(x) Outnewki fKigpun k) (Wi ; ki):in fy;ai; (% ¥)gpun(k, ) :outfai; (v; V) gpun(y
h(w; k) , outnew(y; ¥)fy; a; (vV; V9 gpub (k)

It is clear that a modeling of such an easy function likefun (%) is not a trivial task in SPL. The
inclusion of even local names only concerning to an agent mtibe modelled as output actions
with nonces to guarantee the freshness of the message, witm@yptions to ensure that the
information remains private from eavesdropping. From an pictical point of view, encryptions
are not an economic process, involving common task such asdi@ring and decompression; and
the approach of SPL to model local computations, although pasible, is complex and useless.
From works like CCS [Mil95], calculus [MPW89] or even ntcc PV01, NPV02] a notion of
observational processes is present. We think that an incluen of local computations on SPL
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reasoning techniques can provide elements for the reasomjrof other kind of processes, even
for new threats, like dictionary and guessing attacks Low04, RS9g. Some directions of this
works include the integration of SPL with dynamic and mobile classes of Petri nets AB96],
and the inclusion of CCP [SRP9]] reasoning techniques.

5.3.2 New models of adversaries

Recent works from the literature shows that although the Dolev-Yao adversary model pre-
sented in almost all existing logics for security, is too resictive in the power of an attacker,
assuming that an agent cannot infer information about messge structure or knowledge about
the protocol being used PHO02]. Some works extending attacker capabilities demonstratehat
attackers with more knowledge from the systems can corrupt potocols previously proved as
secure systemsljow95]. Although in this document we expand the attacker model with in-
trusion capabilities, some assumptions can be proved morexplicitly with an stronger model
of an attacker, including notions of algorithmic knowledge FHVM95] and probability. An
interesting strand of research can be derived from this worg, adapting the model of attackers
in SPL with models that explicit adversaries limitations.

5.3.3 Relating Security Models

As we have seen in sectiorb.l, SPL is close to a number of logic approaches such as the
Asynchronous calculus. In another way, several works demonstrate that tle expressiveness
of other process calculi used for security such as the Spi andpplied calculus can be
encoded into [BFHO04]. Others demonstrate how the behavior presented in persignt output
calculus can be encoded in calculus [PSVV04]. We believe that works encoding SPL
behavior to  calculus with persistent conditions can close the gap betwen these di erent
models, allowing translations between languages, enabliithe use of SPL reasoning techniques
for verifying Spi-modelled protocols, as well as allowing guivalences between SPL processes,
provided by techniques such as bisimulations or congruenseinherent to the Spi calculus.

5.3.4 Protocol Implementation

We strongly believe that e cient implementations of both DR and ModMUTE protocols can
be suitable in the meantime as an useful tool to achieve and eopare our theoretical results
with the practicality of real world systems. We rst propose the use of Spacesas an
interesting framework for the development of this protocok, due to its strong bow with SPL.
Since Spacesis an automatic framework based on SPL, there is no much prolems with
the usual gaps between the formal model of the protocol and & implementation. Similarly,
it will be very interesting to implement the proposed SPL enadings of new constructions in
Spaces to enable much clear and precise implementations of severdi erent protocols.
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A An introduction to Petri Nets

Petri nets are an abstract formal model used to describe conorent an asynchronous systems.
In this model it is possible to verify properties of a system,as constraints that can never be
broken. It basic model consists of a directed graph where twdkind of nodes are available:
places and transitions. Places represents states of a praggand transitions the synchronisation

methods between states. This model is well suited to represg sequential and static behaviour

of processes, as well as the dynamic properties and the exdimun of concurrent processes. We
refer the reader to Pet77] for deeper description of the model.

A.1  Multisets

A multiset is a set where the multiplicities of its elements matters.
Multisets could have in nite multiplicities. This is repre sented by including an extra element
1 to the natural numbers. Multisets support addition + and mul tiset inclusion

A.2 General Petri nets

A general Petri net is a place transition system consisting 6 a set of conditions P, a set
of events T and a set of arcs connecting both of them. There are two types foarcs, the
precondition map pre, which to eacht 2 T assigns a multisetpre(t) (traditionally written °t)
over P and a postcondition map post which to eacht 2 T assigns al -multiset post(t) (t°)
over P. Petri nets also include a Capacity function Cap, an 1 -multiset over P, which assigns
to each condition its respective multiplicity.

Token game for general nets.- A marking is a very important concept in Petri nets, since
it captures the notion of a distributed global state. A marki ng is represented by the presence
of tokens on a condition. The number of tokens denotes the mtiplicity of each condition.

Markings can change as events occur, moving tokens from thevent preconditions to its
postconditions by what is called the token game of nets. FoM; M ®markings andt 2 T we
de ne
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t

M!I" M% t MAMO=M ‘t+t

An event t is said to have concession at a markindgM i its occurrence leads to a marking.

A.3 Basic Nets

Basic nets are just a instantiation of a general Petri net, wtere in all the multisets the
multiplicities are either 0 or 1, and so can be regarded as sst In this case, the capacity
function assigns 1 to every condition in such a way that markhgs become just simply subsets
of conditions.

A basic Petri net consists of a set of conditionsB, a set of eventsE and two maps. A pre-
condition map pre: E ! Pow(B), and a postcondition map post: E ! Pow(B):

We can denote-e for the preconditions and e for the postconditions of e 2 E requiring that
e[ €6 ;

Token game for basic nets.-  For markings M; M 0 B andevente2 E, de ne

e

M!1° MO

1) e M&(Mne\ e=; and

(2) MP=(MneJ e

A.4 Nets with persistent conditions

A net with persistent conditions is a modi cation of a basic net. It allows certain conditions to
be persistent in such a way that any number of events can makese of them as preconditions
which never cease to hold. This conditions can also act as pw®nditions for several events
without generating any con ict.

Now, amongst the general conditions of the basic net, are theubset of persistent conditions
P, forming in this way a persistent net.

The general net's capacity function will be either 1 orl on a condition, being1l precisely
on the persistent conditions. Whenp is persistent, p 2 e is interpreted in the general net as
arc weight (e)p = 1 ,andp2 - eas (e)p = 1:
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Token game with persistent conditions.- The token game is modi ed to account for the
subset of persistent conditionsP. Let M and M ° be markings (.e. subsets of conditions),
and e an event. De ne

e

M 1° MO

@ e M&(MnCe[ P)\ e=; and
(2) M°=(Mne[ e[ (M\ P):
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